eISSN: 2299-0046
ISSN: 1642-395X
Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
5/2017
vol. 34
 
Share:
Share:
more
 
 
abstract:
Review paper

The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis

Bogusław Nedoszytko, Magdalena Lange, Małgorzata Sokołowska-Wojdyło, Joanna Renke, Piotr Trzonkowski, Michał Sobjanek, Aneta Szczerkowska-Dobosz, Marek Niedoszytko, Aleksandra Górska, Jan Romantowski, Justyna Czarny, Jarosław Skokowski, Leszek Kalinowski, Roman Nowicki

Adv Dermatol Allergol 2017; XXXIV (5): 405–417
Online publish date: 2017/10/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Regulatory FOXP3+ T cells (Tregs) constitute 5% to 10% of T cells in the normal human skin. They play an important role in the induction and maintenance of immunological tolerance. The suppressive effects of these cells are exerted by various mechanisms including the direct cytotoxic effect, anti-inflammatory cytokines, metabolic disruption, and modulation of the dendritic cells function. The deficiency of Treg cells number or function are one of the basic elements of the pathogenesis of many skin diseases, such as psoriasis, atopic dermatitis, bacterial and viral infections. They also play a role in the pathogenesis of T cell lymphomas of the skin (cutaneous T cell lymphomas – CTCL), skin tumors and mastocytosis. Here, in the second part of the cycle, we describe dysfunctions of Tregs in selected skin diseases.
keywords:

Treg dysfunction, selected skin diseases

references:
Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 2010; 130: 362-70.
Mattozzi C, Salvi M, D’Epiro S, et al. Importance of regulatory T cells in the pathogenesis of psoriasis: review of the literature. Dermatology 2013; 227: 134-45.
Goodman WA, Cooper KD, McCormick TS. Regulation generation: the suppressive functions of human regulatory T cells. Crit Rev Immunol 2012; 32: 65-79.
Buckner JH. Mechanisms of impaired regulation by CDD4(+) CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 2010; 10: 849-59.
Mercadante ER, Lorenz UM. Breaking free of control: how conventional T cells overcome regulatory T cell suppression. Front Immunol 2016; 7: 193.
Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun 2015; 64: 66-73.
Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin 2015; 33: 13-23.
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32: 227-55.
Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol 2011; 127: 1420-32.
Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis-part I: clinical and pathologic concepts. J Allergy Clin Immunol 2011; 127: 1110-8.
Diani M, Altomare G, Reali E. T helper cell subsets in clinical manifestations of psoriasis. J Immunol Res 2016; 2016: 7692024.
Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol 2012; 9: 302-9.
Nedoszytko B, Roszkiewicz J. Znaczenie subpopulacji komórek dendrytycznych w patogenezie ³uszczycy. Post Dermatol Alergol 2007; 24: 263-70.
Nedoszytko B. Znaczenie subpopulacji limfocytów T w patogenezie ³uszczycy. Post Dermatol Alergol 2008; 25: 20-33.
Afshar M, Martinez AD, Gallo RL, et al. Induction and exacerbation of psoriasis with interferon-alpha therapy for hepatitis C: a review and analysis of 36 cases. J Eur Acad Dermatol Venereol 2013; 27: 771-8.
Yan KX, Fang X, Han L, et al. Foxp3+ regulatory T cells and related cytokines differentially expressed in plaque vs. guttate psoriasis vulgaris. Br J Dermatol 2010; 163: 48-56.
Zhang L, Yang XQ, Cheng J, et al. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol 2010; 135: 108-17.
Zhang L, Li Y, Yang X, et al. Characterization of Th17 and FoxP3(+) Treg cells in paediatric psoriasis patients. Scand J Immunol 2016; 83: 174-80.
Fujimura T, Okuyama R, Ito Y, et al. Profiles of Foxp3+ regulatory T cells in eczematous dermatitis, psoriasis vulgaris and mycosis fungoides. Br J Dermatol 2008; 158: 1256-63.
Chen L, Shen Z, Wang G, et al. Dynamic frequency of CD4+CD25+Foxp3+Treg cells in psoriasis vulgaris. J Dermatol Sci 2008; 51: 200-3.
Pawlaczyk M, Karczewski J, Wiktorowicz K. T regulatory CD4+CD25high lymphocytes in peripheral blood of patients suffering from psoriasis. Postep Dermatol Alergol 2010; 27: 25-8.
Yun WJ, Lee DW, Chang SE, et al. Role of CD4CD25FOXP3 regulatory T cells in psoriasis. Ann Dermatol 2010; 22: 397-403.
Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174: 164-73.
Zhang K, Li X, Yin G, et al. Functional characterization of CD4+CD25+ regulatory T cells differentiated in vitro from bone marrow-derived haematopoietic cells of psoriasis patients with a family history of the disorder. Br J Dermatol 2008; 158: 298-305.
Soler DC, Sugiyama H, Young AB, et al. Psoriasis patients exhibit impairment of the high potency CCR5(+) T regulatory cell subset. Clin Immunol 2013; 149: 111-8.
Goodman WA, Levine AD, Massari JV, et al. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol 2009; 183: 3170-6.
Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol 2011; 131: 1853-60.
Zhao M, Wang LT, Liang GP, et al. Up-regulation of micro-RNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol 2014; 150: 22-30.
Tovar-Castillo LE, Cancino-Díaz JC, García-Vázquez F, et al. Under expression of VHL and over-expression of HDACC-1, HIF-1alpha, LL37 and IAP in affected skin biopsies of patients with psoriasis. Int J Dermatol 2007; 46: 239-46.
Shen Z, Chen L, Hao F, et al. Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47/c-Myb binding. J Cell Mol Med 2010; 14: 226-41. Retraction in: J Cell Mol Med 2010; 14: 226.
Keijsers RR, van der Velden HM, van Erp PE, et al. Balance of Treg vs. T-helper cells in the transition from symptom less to lesional psoriatic skin. Br J Dermatol 2013; 168: 1294-302.
Kim J, Bissonnette R, Lee J, et al. The spectrum of mild to severe psoriasis vulgaris is defined by a common activation of IL-17 pathway genes, but with key differences in immune regulatory genes. J Invest Dermatol 2016; 136: 2173-82.
Kim J, Oh CH, Jeon J, et al. Molecular phenotyping small (Asian) versus large (Western) plaque psoriasis shows common activation of IL-17 pathway genes but different regulatory gene sets. J Invest Dermatol 2016; 136: 161-72.
Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep 2011; 11: 29-36.
Mattozzi C, Paolino G, Salvi M, et al. Peripheral blood regulatory T cell measurements correlate with serum vitamin D level in patients with psoriasis. Eur Rev Med Pharmacol Sci 2016; 20: 1675-9.
Orgaz-Molina J, Buendia-Eisman A, et al. Deficiency of serum concentration of 25-hydroxyvitamin D in psoriatic patients: a case-control study. J Am Acad Dermatol 2012; 67: 931-8.
RicerriI F, Pesticelli L, Tripo L, et al. Deficiency of serum concentration of 25hydroxyvitamin D correlates with severity of disease in chronic plaque psoriasis. J Am Acad Dermatol 2013; 68: 511-2.
Finamor DC, Sinigaglia-Coimbra R, Neves LCM, et al. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Dermatoendocrinology 2013; 5: 222-34.
Furuhashi T, Saito C, Torii K, et al. Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS One 2013; 8: e54895.
Søyland E, Heier I, Rodríguez-Gallego C, et al. Sun exposure induces rapid immunological changes in skin and peripheral blood in patients with psoriasis. Br J Dermatol 2011; 164: 344-55.
Quaglino P, Bergallo M, Ponti R, et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology 2011; 223: 57-67.
Diluvio L, Romiti ML, Angelini F, et al. Infliximab therapy induces increased polyclonality of CD4+CD25+ regulatory T cells in psoriasis. Br J Dermatol 2010; 162: 895-7.
Bieber T. Atopic dermatitis. N Engl J Med 2008; 358: 1483-94.
Brown SJ. Molecular mechanisms in atopic eczema: insight gained from genetic studies. J Pathol 2016; 241: 140-5.
Irvine AD, Eichenfield LF, Friedlander SF, et al. Critical issues in the pathogenesis of atopic dermatitis. Semin Cutan Med Surg 2016; 35 (5 Suppl.): S89-91.
Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2016; 138: 336-49.
Kim JE, Kim JS, Cho DH, et al. Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int J Mol Sci 2016; 17:pii: E1234. doi: 10.3390/ijms17081234.
Weidinger S, Novak N. Atopic dermatitis. Lancet 2016; 387: 1109-22.
Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002; 39: 537-45.
Bennett CL, Christie J, Ramsdell F, et al The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20-1.
Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 2016 in press, doi: 10.1111/nyas.13011.
Sawant DV, Vignali DA. Once a Treg, always a Treg? Immunol Rev 2014; 259: 173-91.
Agrawal R, Wisniewski J, Woodfolk JA. The role of regulatory T cells in atopic dermatitis. Curr Probl Dermatol 2011; 41: 112-24.
Werfel T, Wittmann M. Regulatory role of T lymphocytes in atopic dermatitis. Chem Immunol Allergy 2008; 94: 101-11.
Auriemma M, Vianale G, Amerio P, et al. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw 2013; 24: 37-44.
Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013; 25: 305-12.
Joetham A, Matsubara S, Okamoto M, et al. Plasticity of regulatory T cells: subversion of suppressive function and conversion to enhancement of lung allergic responses. J Immunol 2008; 180: 7117-24.
Reefer AJ, Satinover SM, Solga MD, et al. Analysis of CD25hiCD4+ “regulatory” T-cell subtypes in atopic dermatitis reveals a novel Th2-like population. J Allergy Clin Immunol 2008; 121: 415-22.
Duhen T, Duhen R, Lanzavecchia A, et al. Functionally distinct subset of human FOXP3+Treg cells that phenotypically mirror effector Th cells. Blood 2012; 119: 4430-40.
Kim BS, Kim IK, Park YJ, et al. Conversion of Th2 memory cells into Foxp3+ regulatory T cells suppressing Th2-mediated allergic asthma. Proc Natl Acad Sci USA 2010; 107: 8742-7.
Ma L, Xue HB, Guan XH, et al. The Imbalance of Th17 cells and CD4(+) CD25(high) Foxp3(+) Treg cells in patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2014; 28: 1079-86.
Schnopp C, Rad R, Weidinger A, et al. Fox-P3-positive regulatory T cells are present in the skin of generalized atopic eczema patients and are not particulary affected by medium-dose UVA1 therapy. Photodermatol Photoimmunol Photomed 2007; 23: 81-5.
Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117: 176-83.
Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska A, et al. Frequency and activation of CD4+CD25 FoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol 2013; 162: 16-24.
Ito Y, Adachi Y, Makino T, et al. Expansion of FOXP3-positive CD4+CD25+ T cells associated with disease activity in atopic dermatitis. Ann Allergy Asthma Immunol 2009; 103: 160-5.
Gáspár K, Baráth S, Nagy G, et al. Regulatory T-cell subsets with acquired functional impairment: important indicators of disease severity in atopic dermatitis. Acta Derm Venereol 2015; 95: 151-5.
Hijnen D, Haeck I, van Kraats AA, et al. Cyclosporin A reduces CD4(+)CD25(+) regulatory T-cell numbers in patients with atopic dermatitis. J Allergy Clin Immunol 2009; 124: 856-8.
Samochocki Z, Alifier M, Bodera P, et al. T-regulatory cells in severe atopic dermatitis: alterations related to cytokines and other lymphocyte subpopulations. Arch Dermatol Res 2012; 304: 795-801.
Lesiak A, Smolewski P, Sobolewska-Sztychny D, et al. The role of T-regulatory cells and Toll-like receptors 2 and 4 in atopic dermatitis. Scand J Immunol 2012; 76: 405-10.
Zhang YY, Wang AX, Xu L, et al Characteristics of peripheral blood CD4+CD25+ regulatory T cells and related cytokines in severe atopic dermatitis. Eur J Dermatol 2016; 26: 240-6.
Roesner LM, Floess S, Witte T, et al. Foxp3(+) regulatory T cells are expanded in severe atopic dermatitis patients. Allergy 2015; 70: 1656-60.
Hinz D, Bauer M, Röder S, et al. LINA study group. Cord blood Tregs with stable FOXP3 expressionare influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy 2012; 67: 380-9.
Schaub B, Liu J, Höppler S, et al. Impairment of T-regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 2008; 121: 1491-9.
Rueda CM, Jackson CM, Chougnet CA. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways. Front Immunol 2016; 7: 216.
Ma L, Xue HB, Guan XH, et al. The imbalance of Th17 cells and CD4(+)CD25(high)Foxp3(+)Treg cells in patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2014; 28: 1079-86.
Vestergaard C, Bang K, Gesser B, et al. A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J Invest Dermatol 2000; 115: 640-6.
Kakinuma T, Nakamura K, Wakugawa M, et al. Thymus and activation-regulated chemokine in atopic dermatitis: serum thymus and activation-regulated chemokine level is closely related with disease activity. J Allergy Clin Immunol 2001; 107: 535-41.
Reefer AJ, Satinover SM, Wilson BB, Woodfolk JA. The relevance of microbial allergens to the IgE antibody repertoire in atopic and nonatopic eczema. J Allergy Clin Immunol 2007; 120: 156-63.
Kim HJ, Kim YJ, Lee SH, et al. Effects of Lactobacillus rhamnosus on allergic march model by suppressing Th2, Th17, and TSLP responses via CD4(+)CD25(+)Foxp3(+) Tregs. Clin Immunol 2014; 153: 178-86.
Ou LS, Goleva E, Hall C, Leung DY. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 2004; 113: 756-63.
Lin YT, Wang CT, Chao PS, et al. Skin-homing CD4+ Foxp3+ T cells exert Th2-like function after staphylococcal superantigen stimulation in atopic dermatitis patients. Clin Exp Allergy 2011; 41: 516-25.
Mittag D, Scholzen A, Varese N, et al. The effector T cell response to ryegrass pollen is counter regulated by simultaneous induction of regulatory T cells. J Immunol 2010; 184: 4708-16.
Grindebacke H, Wing K, Andersson AC, et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy 2004; 34: 1364-72.
Möbs C, Slotosch C, Löffler H, et al. Birch pollen immunotherapy leads to differential induction of regulatory T cells and delayed helper T cell immune deviation. J Immunol 2010; 184: 2194-203.
Thunberg S, Akdis M, Akdis CA, et al. Immune regulation by CD4+CD25+ T cells and interleukin-10 in birch pollen-allergic patients and non-allergic controls. Clin Exp Allergy 2007; 37: 1127-36.
Grindebacke H, Larsson P, Wing K, et al. Specific immunotherapy to birch allergen does not enhance suppression of Th2 cells by CD4(+)CD25(+)regulatory T cells during pollen season. J Clin Immunol 2009; 29: 752-60.
Bohle B, Kinaciyan T, Gerstmayr M, et al. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol 2007; 120: 707-13.
Zhang BX, Lyu JC, Liu HB, et al. Attenuation of peripheral regulatory T-cell suppression of skin-homing CD8+T cells in atopic dermatitis. Yonsei Med J 2015; 56: 196-203.
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 2015; 8: 17.
Gómez E, Fernández TD, Doña I, et al. Initial immunological changes as predictors for house dust mite immunotherapy response. Clin Exp Allergy 2015; 45: 1542-53.
Tian M, Wang Y, Lu Y, et al. Effects of sublingual immunotherapy for Dermatophagoides farinae on Th17 cells and CD4(+) CD25(+) regulatory T cells in peripheral blood of children with allergic asthma. Int Forum Allergy Rhinol 2014; 4: 371-5.
Suárez-Fueyo A, Ramos T, Galán A, et al. Grass tablet sublingual immunotherapy downregulates the Th2 cytokine response followed by regulatory T-cell generation. J Allergy Clin Immunol 2014; 133: 130-8.e1–2.
Maazi H, Shirinbak S, Willart M, et al. Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy. Clin Exp Allergy 2012; 42: 1519-28.
Miao Q, Wang J, Xu W, et al. A comparision of the effects of subcutaneous and sublingual immunotherapy on immunological responses in children with asthma. Zhongguo Dang Dai Er Ke Za Zhi 2015; 17: 1210-6.
Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy 2015; 45: 1015-26.
Thang CL, Zhao X. Effects of orally administered immunodominant T-cell epitope peptides on cow’s milk protein allergy in a mouse model. Food Res Int 2015; 71: 126-31.
Takagi H. A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA 2005; 102: 17525-30.
Takaiwa F. A rice-based edible vaccine expressing multiple T-cell epitopes to induce oral tolerance and inhibit allergy. Immunol Allergy Clin North Am 2007; 27: 129-39.
Jutel M, Akdis M, Blaser K, et al. Mechanisms of allergen specific immunotherapy – T-cell tolerance and more. Allergy 2006; 61: 796-807.
Niedoszytko M, Bruinenberg M, de Monchy J, et al. Gene expression analysis in predicting the effectiveness of insect venom immunotherapy. J Allergy Clin Immunol 2010; 125: 1092-7.
Sharabi AB, Aldrich M, Sosic D, et al. Twist-2 controls myeloid lineage development and function. PLoS Biol 2008; 6: e316.
Zimmerli SC, Hauser C. Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1. J Invest Dermatol 2007; 127: 2381-90.
Ippoliti F, De Santis W, Volterrani A, et al. Immunomodulation during sublingual therapy in allergic children. Pediatr Allergy Immunol 2003; 14: 216-21.
Jawed SI, Myskowski PL, Horwitz S, et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol 2014; 70: 205.e1-16;
Heid JB, Schmidt A, Oberle N, et al. FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome. J Invest Dermatol 2009; 129: 2875-85.
Krejsgaard T, Odum N, Geisler C, et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 2012; 26: 424-32.
Tiemessen MM, Mitchell TJ, Hendry L, et al. Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 2217-23.
Klemke CD, Fritzsching B, Franz B, et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sézary syndrome from other cutaneous T-cell lymphomas. Leukemia 2006; 20: 1123-9.
Soko³owska-Wojdy³o M, Jankowska-Konsur A, Grzanka A, Maciejewska-Radomska A. Patogeneza ziarniniaka grzybiastego i zespo³u Sézary’ego. Przegl Dermatol 2012; 99: 235-40.
Hus I, Roliñski J. Limfocyty T regulatorowe i Th17 w chorobach limfoproliferacyjnych. Acta Haematol Pol 2009; 40: 531-43.
Clark RA. Regulation gone wrong: a subset of Sézary patients have malignant regulatory T cells. J Invest Dermatol 2009; 129: 2747-50.
Wang J, Ke XY. The four types of Tregs in malignant lymphomas. J Hematol Oncol 2011; 4: 0.
Heid JB, Schmidt A, Oberle N, et al. FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome. J Invest Dermatol 2009; 129: 2875-85.
Knol AC, Quéreux G, Brocard A, et al. Absence of modulation of CD4+CD25 regulatory T cells in CTCL patients treated with bexarotene. Exp Dermatol 2010; 19: e95-102.
Wada DA, Wilcox RA, Weenig RH, et al. Paucity of intraepidermal FoxP3-positive T cells in cutaneous T-cell lymphoma in contrast with spongiotic and lichenoid dermatitis. J Cutan Pathol 2010; 37: 535-41.
Krejsgaard T, Gjerdrum LM, Ralfkiaer E, et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia 2008; 22: 2230-9.
Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640-7.
Hanafusa T, Matsui S, Murota H, et al. Increased frequency of skin-infiltrating FoxP3+ regulatory T cells as a diagnostic indicator of severe atopic dermatitis from cutaneous T cell lymphoma. Clin Exp Immunol 2013; 172: 507-12.
Fujimura T, Okuyama R, Ito Y, et al. Profiles of Foxp3+ regulatory T cells in eczematous dermatitis, psoriasis vulgaris and mycosis fungoides. Br J Dermatol 2008; 158: 1256-63.
Dejaco C, Duftner C, Schirmer M. Are regulatory T-cells linked with aging? Exp Gerontol 2006; 41: 339-45.
Shiue LH, Couturier J, Lewis DE, et al. The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4(+)Foxp3(+)CD25(-) T cells in patients with leukemic cutaneous T-cell lymphoma. Photodermatol Photoimmunol Photomed 2015; 31: 184-94.
Shindo M, Yoshida Y. Regulatory T cells and skin tumors. Recent Pat Inflamm Allergy Drug Discov 2010; 4: 249-54.
Kaporis HG, Guttman-Yassky E, Lowes MA, et al. Human basal cell carcinoma is associated with Foxp3+ T cell in Th2 dominant microenvironment. J Invest Dermatol 2007; 127: 2391-8.
Mühleisen B, Petrov I, Gächter T, et al. Progression of cutaneous squamous cell carcinoma in immunosuppressed patients is associated with reduced CD123+ and FOXP3+ cells in the perineoplastic inflammatory infiltrate. Histopathology 2009; 55: 67-76.
Zhang S, Fujita H, Mitsui H, et al. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One 2013; 8: e62154.
Perrotta RE, Giordano M, Malaguarnera M. Non-melanoma skin cancers in elderly patients. Crit Rev Oncol Hematol 2011; 80: 474-80.
Fujii H, Arakawa A, Kitoh A, et al. Perturbations of both nonregulatory and regulatory FOXP3+ T cells in patients with malignant melanoma. Br J Dermatol 2011; 164: 1052-60.
Valent P, Escribano L, Broesby-Olsen S, et al. European Competence Network on Mastocytosis. Proposed diagnostic algorithm for patients with suspected mastocytosis: a proposal of the European Competence Network on Mastocytosis. Allergy 2014; 69: 1267-74.
Lange M, Nedoszytko B, Górska A, et al. Mastocytosis in children and adults: clinical disease heterogeneity. Arch Med Sci 2012; 8: 533-41.
Hartmann K, Escribano L, Grattan C, et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol 2016; 137: 35-45.
Gounaris E, Erdman SE, Restaino C, et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 2007; 104: 19977-82.
Gounaris E, Blatner NR, Dennis K, et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 2009; 69: 5490-7.
Koenen HJ, Smeets RL, Vink PM, et al. Human CD25high Foxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008; 112: 2340-52.
Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008; 29: 44-56.
Colombo MP, Piconese S. Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 2009; 69: 5619-22.
Gri G, Piconese S, Frossi B, et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-40L interaction. Immunity 2008; 29: 771-81.
Rabenhorst A, Leja S, Schwaab J, et al. Expression of programmed cell death ligand-1 in mastocytosis correlates with disease severity. J Allergy Clin Immunol 2016; 137: 314-8.
Rabenhorst A, Schlaak M, Heukamp LC, et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 2012; 120: 2042-54.
Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70 /CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 2004; 574: 37-41.
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20: 5064-74.
Kataoka TR, Fujimoto M, Moriyoshi K, et al. PD-1 regulates the growth of human mastocytosis cells. Allergol Int 2013; 62: 99-104.
Ni X, Langridge T, Duvic M. Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab. Oncoimmunology 2015; 4: e1011524.
Trzonkowski P, Bacchetta R, Battaglia M, et al. Hurdles in therapy with regulatory T cells. Sci Transl Med 2015; 7: 304ps18.
FEATURED PRODUCTS
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe