Contemporary Oncology
eISSN: 1897-4309
ISSN: 1428-2526
Contemporary Oncology/Współczesna Onkologia
Current issue Archive Manuscripts accepted About the journal Supplements Addendum Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2025
vol. 29
 
Share:
Share:
Review paper

Advancements and future directions of iron oxide nanoparticles in cancer therapy

Ahmed el-Mallul
1
,
Ryszard Tomasiuk
1
,
Piotr Jaworski
1
,
Sadia Mughali
2

  1. University of Radom, Faculty of Medical Sciences and Health Sciences, Radom, Poland
  2. Bahria University Medical and Dental College (BUMDC), Department of Medicine, Karachi, Pakistan
Contemp Oncol (Pozn) 2025; 29 (4): 323–332
Online publish date: 2025/11/05
Article file
Get citation
 
PlumX metrics:
 
1. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 2017; 9: 448-451.
2. Hassan D, Sani A, Medina DI. Limitations of nanocarriers such as cell and tissue toxicity, genotoxicity, scale-up of nanomaterials. In: Khan FA (ed.). Nano drug delivery for cancer therapy: principles and practices. Springer Nature Singapore, Singapore 2023, 149-171.
3. Pourmadadi M, Ostovar S, Ruiz-Pulido G, Hassan D, Souri M, Manicum ALE, et al. Novel epirubicin-loaded nanoformulations: advancements in polymeric nanocarriers for efficient drug delivery. Front Pharmacol 2023; 14: 1132465.
4. Ferrara F, Caputo D, Canale C, Xu Y, Chen Q, Wang Y, et al. Substantial impacts of engineered nano-delivery systems in cancer treatment: current status and future trends. Biomed Pharmacother 2023; 158: 114154.
5. Fahim YA, El-Khawaga AM, Sallam RM, Elsayed MA, Assar MFA. Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities. Sci Rep. 2024; 14: 8820.
6. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112: 5818-5878.
7. Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 2012; 7: 1443-1459.
8. Zanganeh S, Spitler R, Erfanzadeh M, Alkilany AM, Mahmoudi M. Protein corona: opportunities and challenges. Int J Biochem Cell Biol 2016; 75: 143-147.
9. Zhang P, Sun F, Tsao C, Liu S, Jain P, Sinclair A, et al. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci U S A 2015; 112: 12046-12051.
10. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 2017; 11: 4542-4552.
11. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010; 1.
12. Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2020; 15: 167-204.
13. OECD. Test Guidelines for Nanomaterial Safety. OECD Publishing, Paris 2023.
14. Fahim YA, Hasani IW, Mahmoud Ragab W. Promising biomedical applications using superparamagnetic nanoparticles. Eur J Med Res 2025; 30: 441.
15. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112: 5818-5878.
16. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Mora- les MP, Böhm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012; 41: 4306-4334.
17. Kim JE, Shin JY, Cho MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 2012; 86: 685-700.
18. Radu M, Dinu D, Sima C, Burlacu R, Hermenean A, Ardelean A, et al. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts. Toxicol In Vitro 2015; 29: 1492-1502.
19. Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog 2013; 109: 25-30.
20. Tewari S, Sah JF, Sahoo A. Regulatory perspectives and challenges of nanoparticle research: advances in nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023; e2079.
21. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41: 2885-2911.
22. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5: 161-171.
23. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010; 1: 5358.
24. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021.
25. Laurent S, Forge D, Port M, Roch A, Robic C, Elst EV, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108: 2064-2110.
26. Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252-1265.
27. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 2010; 62: 284-304.
28. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007; 46: 1222-1244.
29. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36: R198-R206.
30. Mah C, Zolotukhin I, Fraites TJ, Song S, Flotte TR, Dobson J, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 2000; 1: S239.
31. Levy M, Wilhelm C, Siaugue JM, Horner O, Bacri1 JC, Gazeau F. Magnetically induced hyperthermia: size-dependent heating power of -Fe2O3 nanoparticles. J Phys Condens Matter 2008; 20: 204133.
32. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 2005; 100: 1-11.
33. Zhang Z, Liu Y, Xie P, Li W, Dou S, Wang P. Studying the interaction between gyrase and DNA using magnetic tweezers. Chin Sci Bull 2012; 57: 3560-3566.
34. Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 2005; 21: 8858-8864.
35. Levy M, Gazeau F, Wilhelm C. Focused ultrasound: a promising experimental modality for magnetically induced hyperthermia. Eur Phys J B 2008; 65: 49-56.
36. Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 2008; 37: 223-228.
37. Ho D, Wang CH, Chow EKH. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 2015; 1: e1500439.
38. Torchilin VP. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009; 71: 431-444.
39. Hansol K, Seokha J, Hyukjun C, MungSoo K, Seong Guk P, Heejin J, et al. Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T1 contrast agents for high-field MRI. J Con Rel 2012; 335: 269-280.
40. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63: 24-46.
41. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008; 5: 316-327.
42. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011; 7: 1322-1337.
43. Di Corato R, Bigall NC, Ragusa A, Dorfs D, Genovese A, Maro- tta R, et al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and imaging. Nano Lett 2011; 11: 2632-2639.
44. Ai H, Jones SA, de Villiers MM. Nano-encapsulation as a novel approach to improve solubility and stability of poorly soluble anticancer drugs. Int J Pharm 2011; 419: 194-204.
45. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, et al. Magnetic nanoparticle design for medical applications. Prog Solid State Chem 2006; 34: 237-247.
46. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: R167-R181.
47. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 2010; 62: 144-149.
48. Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009; 6: 1417-1428.
49. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-212.
50. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006; 7: 321-326.
51. Ma X, Huilin S, Tang Y, Qu F, Priestley RD. Core-shell structured Fe3O4 polydopamine nanoparticle for combined chemo-photothermal therapy. Colloids Surf B Biointerfaces 2013; 106: 205-212.
52. Shevtsov M, Multhoff G. Recent developments of magnetic nanoparticles for theranostic applications. J Nanomater 2011; 2011: 165942.
53. Djebbi K, Shi B, Weng T, Bahri M, Elaguech MA, Liu J, et al. Highly sensitive fluorescence assay for miRNA detection: investigation of the DNA spacer effect on the dsn enzyme activity toward magnetic-bead-tethered probes. ACS Omega 2022; 7: 2224-2233.
54. Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, et al. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 2014; 35: 3666-3677.
55. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007; 7: 3759-3765.
56. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41: 2740-2779.
57. Hergt R, Dutz S, Röder M. Effects of size distribution on hystere­sis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 2008; 20: 385214.
58. Wilhelm C, Gazeau F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 2008; 29: 3161-3174.
59. Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging 2000; 12: 2-19.
60. Kubo T, Sugita T, Shimose S, Ikuta Y, Murakami T. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int J Oncol 2000; 17: 309-315.
61. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008; 60: 1241-1251.
62. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 2007; 32: 962-990.
63. Kim J, Kim J, Bae JS. ROS-responsive nanoplatform for combined delivery of NO and H2S: potential applications in treating ischemic diseases. J Control Release 2020; 317: 26-34.
64. Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 2013; 42: 7816-7833.
65. Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 2011; 44: 853-862.
66. Yildirim A, Bayindir M. Gas phase functionalization of mesoporous silica nanoparticles. ACS Appl Mater Interfaces 2010; 2: 3333-3341.
67. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 1986; 46: 6387-6392.
68. Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013; 34: 5163-5171.
69. Hassan D, Bakhsh H, Khurram AM, Bhutto SA, Jalbani NS, Ghumro T, et al. Fluorescent nanotechnology: an evolution in optical sensors. Curr Anal Chem 2022; 18: 176-185.
70. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem 2023; 246: 14995.
71. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008; 3: 133-149.
72. Berry CC. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine 2008; 3: 357-365.
73. Das S, Pérez-Ramirez J, Gong J, Dewangan N, Hidajat K, Gates BC, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020; 49: 2937-3004.
74. Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85: 101-113.
75. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chem Int Ed 2007; 46: 1222-1244.
76. Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 2021; 18: 319.
77. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004; 3: 891-895.
78. Wei F, Neal CJ, Sakthivel TS, Seal S, Kean T, Razavi M, et al. Ce- rium oxide nanoparticles protect against irradiation-induced cellular damage while augmenting osteogenesis. Mater Sci Eng C 2021; 126: 112145.
79. Van de Looij SM, Hebels ER, Viola M, Hembury M, Oliveira S, Vermonden T. Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications. Bioconjug Chem 2021; 33: 4-23.
80. Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T. Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 2014; 53: 1867-1879.
81. Xie J, Yan C, Yan Y, Chen L, Song L, Zang F, et al. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale 2016; 8: 16902-16915.
82. Wang Y, Zou L, Qiang Z, Jiang J, Zhu Z, Ren J. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using Mn-Zn ferrite magnetic nanoparticles. ACS Biomater Sci Eng 2020; 6: 3550-3562.
83. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2018; 7: 1700845.
84. Balakrishnan PB, Silvestri N, Fernandez-Cabada T. Exploiting unique alignment of cobalt ferrite nanoparticles, mild hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Adv Mater 2020; 32: 2003712.
85. Habibzadeh SZ, Salehzadeh A, Moradi-Shoeili Z, Shandiz SAS. A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe3O4 and 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)- 2-(4-phenylthiazol-2-yl) hydrazine: assessment on anti-cancer against gastric AGS cancer cells. Mol Biol Rep 2020; 47: 1637-1647.
86. Mikaeili Ghezeljeh S, Salehzadeh A, Ataei-E Jaliseh S. Iron oxide nanoparticles coated with glucose and conjugated with safranal (Fe3O4 glu-safranal NPs) inducing apoptosis in liver cancer cell line (HepG2). BMC Chem 2024; 18: 33.
87. Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 2008; 103: 122-130.
88. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2: 22-32.
89. Martins C, Rolo C, Cacho VRG, Pereira LCJ, Borges JP, Silva JC, et al. Enhancing the magnetic properties of superparamagnetic iron oxide nanoparticles using hydrothermal treatment for magnetic hyperthermia application. Mater Adv 2025; 6: 1726-1743.
90. Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004; 17: 484-499.
91. Srinivasan B, Kolluru C, Mitragotri S. Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev 2011; 63: 478-489.
92. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 2008; 47: 5362-5365.
93. Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater 2014; 13: 125-138.
94. Xie X, Zhang L, Zhang W, Tayebee R, Hoseininasr A, Vatan- pour HH, et al. Fabrication of temperature and pH sensitive decorated magnetic nanoparticles as effective biosensors for targeted delivery of acyclovir anti-cancer drug. J Mol Liq 2020; 309: 113024.
95. Huang CH, Huang TJ, Ke CJ, Yao CH. Doxorubicin-gelatin/Fe3O4-alginate dual-layer magnetic nanoparticles as targeted anticancer drug delivery vehicles. Polymers 2020; 12: 1747.
96. Augustin E, Czubek B, Nowicka AM, Kowalczyk A, Stojek Z, Mazerska Z. Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol In Vitro 2016; 33: 45-53.
97. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie- Staunton K, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 2015; 17: 1-17.
98. Piehler S, Dähring H, Grandke J, Göring J, Couleaud P, Aires A, et al. Iron oxide nanoparticles as carriers for DOX and magnetic hyperthermia after intratumoral application into breast cancer in mice: impact and future perspectives. Nanomaterials 2020; 10: 1016.
99. Avedian N, Zaaeri F, Daryasari MP, Javar HA, Khoobi M. pH-sensitive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery. J Drug Deliv Sci Technol 2018; 44: 323-332.
100. Fathi M, Barar J, Erfan-Niya H, Omidi Y. Methotrexate-conjugated chitosan-grafted pH-and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol 2020; 154: 1175-1184.
101. Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, et al. Metformin- induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J Am Chem Soc 2020; 142: 4944-4954.
102. Dhavale RP, Dhavale RP, Sahoo SC, Kollu P, Jadhav SU, Patil PS, et al. Chitosan coated magnetic nanoparticles as carriers of anticancer drug Telmisartan: pH-responsive controlled drug release and cytotoxicity studies. J Phys Chem Solids 2021; 148: 109749.
103. Sayadnia S, Arkan E, Jahanban-Esfahlan R, Sayadnia S, Jay- mand M. Tragacanth gum-based pH-responsive magnetic hydrogels for “smart” chemo/hyperthermia therapy of solid tumors. Polym Adv Technol 2021; 32: 262-271.
104. Grabowska M, Grześkowiak BF, Szutkowski K, Wawrzyniak D, Głodowicz P, Barciszewski J, et al. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS One 2019; 14: e0213852.
105. Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ, et al. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme. J Biomed Nanotechnol 2016; 12: 347-356.
106. Joshy KS, Augustine R, Mayeen A, Alex SM, Hasan A, Thomas S, et al. NiFe2O4/poly (ethylene glycol)/lipid-polymer hybrid nano- particles for anti-cancer drug delivery. New J Chem 2020; 44: 18162-18172.
107. Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, et al. Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging-guided photothermal/chemotherapy of tumors. Langmuir 2019; 35: 13135-13144.
108. Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011; 166: 8-23.
109. Natarajan A, Gruettner C, Ivkov R, DeNardo GL, Mirick G, Yuan A, et al. NanoFerrite particle based radiofrequency thermal ablation treatment: potential for treatment of colorectal cancer. Int J Hyperthermia 2008; 24: 497-503.
110. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9: 253-266.
111. Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999; 201: 413-419.
112. Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr CM. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 2013; 7: 1961-1973.
113. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7: 771-782.
114. Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with pluronic P123 for biomedical applications. J Magn Magn Mater 2005; 293: 265-270.
115. Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60: 1153-1166.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.