1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74: 229-263.
2.
Wu WH, Yang YL, Wang T, et al. Ginsenoside compound K restrains hepatic fibrotic response by dual-inhibition of GLS1 and LDHA. Phytomedicine 2024; 135: 156223.
3.
Ramachandran P, Henderson NC. Antifibrotics in chronic liver disease: tractable targets and translational challenges. Lancet Gastroenterol Hepatol 2016; 1: 328-340.
4.
Zhang N, Yao H, Zhang Z, et al. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14: 1131588.
5.
Israelsen M, Francque S, Tsochatzis EA, Krag A. Steatotic liver disease. Lancet 2024; 404: 1761-1778.
6.
Tang B, Jin C, Li M, et al. A novel pectin-like polysaccharide from Crocus sativus targets Galectin-3 to inhibit hepatic stellate cells activation and liver fibrosis. Carbohydr Polym 2025; 348: 122826.
7.
Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis. Lancet 2021; 398: 1359-1376.
8.
Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Jama 2020; 323: 844-853.
9.
Ouyang Y, Chen Y, Chen K, et al. Mendelian randomization and colocalization analysis reveal novel drug targets for myasthenia gravis. Hum Genomics 2024; 18: 43.
10.
Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1-22.
11.
Wu J, Mei Y, Li X, et al. PRCP is a promising drug target for intracranial aneurysm rupture supported via multi-omics analysis. Stroke Vasc Neurol 2024; 10: e003076.
12.
Li X, Shen A, Zhao Y, Xia J. Mendelian randomization using the druggable genome reveals genetically supported drug targets for psychiatric disorders. Schizophr Bull 2023; 49: 1305-1315.
13.
Sun J, Zhao J, Jiang F, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med 2023; 15: 75.
14.
Freshour SL, Kiwala S, Cotto KC, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res 2021; 49: D1144-d51.
15.
Finan C, Gaulton A, Kruger FA, et al. The druggable genome and support for target identification and validation in drug
16.
development. Sci Transl Med 2017; 9: eaag1166.
17.
Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 2015; 30: 543-552.
18.
Liu Z, Peng Z, Lin H, et al. Identifying potential drug targets for idiopathic pulmonary fibrosis: a mendelian randomization study based on the druggable genes. Respir Res 2024; 25: 217.
19.
Gkatzionis A, Burgess S, Newcombe PJ. Statistical methods for cis-Mendelian randomization with two-sample summary-level data. Genet Epidemiol 2023; 47: 3-25.
20.
Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 2016; 35: 1880-1906.
21.
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 2016; 40: 304-314.
22.
Foley CN, Staley JR, Breen PG, et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat Commun 2021; 12: 764.
23.
Zhang LY, Chu YH, You YF, et al. Systematic druggable genome-wide mendelian randomization identifies therapeutic targets for functional outcome after ischemic stroke. J Am Heart Assoc 2024; 13: e034749.
24.
Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun 2018; 9: 918.
25.
Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 2020; 52: 1036-1045.
26.
Chen Y, Lu T, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet 2023; 55: 44-53.
27.
Qin Y, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54: 134-142.
28.
Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol 2023; 24: 1540-1551.
29.
Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol 2021; 36: 465-478.
30.
Ding J, Liu H, Zhang X, et al. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Sci Transl Med 2024; 16: eadh9940.
31.
Ma J, Li Y, Chen M, et al. hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B. Cell Biol Toxicol 2023; 39: 1-22.
32.
Kotsiliti E, Leone V, Schuehle S, et al. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 2023; 79: 296-313.
33.
Zhang L, Zhao C, Dai W, et al. Disruption of cholangiocyteB cell crosstalk by blocking the CXCL12-CXCR4 axis alleviates liver fibrosis. Cell Mol Life Sci 2023; 80: 379.
34.
Kang X, Chen S, Pan L, et al. Deletion of Mettl3 at the proB stage marginally affects B cell development and profibrogenic activity of B cells in liver fibrosis. J Immunol Res 2022; 2022: 8118577.
35.
Lu Y, Li M, Zhou Q, et al. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. J Ethnopharmacol 2022; 294: 115324.
36.
Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43: 329-332.
37.
Liang QS, Xie JG, Yu C, et al. Splenectomy improves liver fibrosis via tumor necrosis factor superfamily 14 (LIGHT) through the JNK/TGF-β1 signaling pathway. Exp Mol Med 2021; 53: 393-406.
38.
Wu Y, Zhan S, Chen L, et al. TNFSF14/LIGHT promotes cardiac fibrosis and atrial fibrillation vulnerability via PI3Kγ/SGK1 pathway-dependent M2 macrophage polarisation. J Transl Med 2023; 21: 544.
39.
da Silva Antunes R, Mehta AK, Madge L, et al. TNFSF14 (LIGHT) exhibits inflammatory activities in lung fibroblasts complementary to IL-13 and TGF-β. Front Immunol 2018; 9: 576.
40.
Li Y, Tang M, Han B, et al. Tumor necrosis factor superfamily 14 is critical for the development of renal fibrosis. Aging (Albany NY) 2020; 12: 25469-25486.
41.
Zhong XY, Xu XX, Yu JH, et al. Clinical and biological significance of Cdk10 in hepatocellular carcinoma. Gene 2012; 498: 68-74.
42.
Kim DH, Kim WD, Kim SK, et al. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis 2020; 11: 406.
43.
Han H, Zhang C, Shi W, et al. NSUN5 facilitates hepatocellular carcinoma progression by increasing SMAD3 expression. Adv Sci (Weinh) 2024; 2024: e2404083.
44.
Yao J, Zhang X, Li J, et al. Silencing TRIP13 inhibits cell growth and metastasis of hepatocellular carcinoma by activating of TGF-β1/smad3. Cancer Cell Int 2018; 18: 208.
45.
Nahon P, Sutton A, Rufat P, et al. Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis. Hepatology 2009; 50: 1484-1493.
46.
Nahon P, Sutton A, Rufat P, et al. A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. J Hepatol 2012; 56: 426-432.
47.
Wang C, Zheng X, Zhang J, et al. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621: 830-839.
48.
Zhang LZ, He X, Zhu HD. Targeting CD300ld to normalize the tumor microenvironment: an emerging insight in cancer immunotherapy. MedComm (2020) 2024; 5: e607.
Copyright: © Clinical and Experimental Hepatology. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/) enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.