Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Advances in Interventional Cardiology
eISSN: 1897-4295
ISSN: 1734-9338
Advances in Interventional Cardiology/Postępy w Kardiologii Interwencyjnej
Current Issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2025
vol. 21
 
Share:
Share:
Original paper

Plasma levels of NO-related pathway molecules to predict post-transcatheter aortic valve implantation major adverse cardiovascular events: a prospective, multicenter study

Aleksandra Gąsecka
1
,
Natalia Krajewska
1
,
Bogna Rajewska
1
,
Agata Suleja
1
,
Weronika Kisielewska
1
,
Michał Łomiak
1
,
Jan Budzianowski
2
,
Anna Olasińska-Wiśniewska
3
,
Janusz Kochman
1
,
Marcin Ufnal
4

  1. 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
  2. Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Góra, Collegium Medicum, Zielona Gora, Poland
  3. Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
  4. Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
Adv Interv Cardiol 2025; 21, 2 (80): 211–220
Online publish date: 2025/06/04
Article file
- plasma levels (1).pdf  [0.41 MB]
Get citation
 
 
1. Yadgir S, Johnson CO, Aboyans V, et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990-2017. Circulation 2020; 141: 1670-80.
2. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev Esp Cardiol (Engl Ed) 2022; 75: 524.
3. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019; 380: 1695-705.
4. Forrest JK, Deeb GM, Yakubov SJ, et al. 4-year outcomes of patients with aortic stenosis in the evolut low risk trial. J Am Coll Cardiol 2023; 82: 2163-5.
5. Eftychiou C, Eteocleous N, Zittis I, et al. Outcomes of transfemoral transcatheter aortic valve implantation (TAVI) and predictors of thirty-day major adverse cardiovascular events (MACE) and one-year mortality. Hell J Cardiol 2021; 62: 57-64.
6. O’Sullivan CJ, Stortecky S, Heg D, et al. Impact of B-type natriuretic peptide on short-term clinical outcomes following transcatheter aortic valve implantation. EuroIntervention 2015; 10: e1-8.
7. Ryan N, Nombela-Franco L, Jiménez-Quevedo P, et al. The value of the SYNTAX Score II in predicting clinical outcomes in patients undergoing transcatheter aortic valve implantation. Rev Esp Cardiol 2018; 71: 628-37.
8. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res 2007; 101: 654-62.
9. Böger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr 2004; 134 (10 Suppl): 2842S-7S.
10. Van Guldener C, Nanayakkara PWB, Stehouwer CDA. Homocysteine and asymmetric dimethylarginine (ADMA): biochemically linked but differently related to vascular disease in chronic kidney disease. Clin Chem Lab Med 2007; 45: 1683-7.
11. Strobel J, Müller F, Zolk O, et al. Transport of asymmetric dimethylarginine (ADMA) by cationic amino acid transporter 2 (CAT2), organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1). Amino Acids 2013; 45: 989-1002.
12. Bode-Böger SM, Scalera F, Kielstein JT, et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 2006; 17: 1128-34.
13. Schlesinger S, Sonntag SR, Lieb W, Maas R. Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. PLoS One 2016; 11: e0165811.
14. Oliva-Damaso E, Oliva-Damaso N, Rodriguez-Esparragon F, et al. Asymmetric (ADMA) and symmetric (SDMA) dimethylarginines in chronic kidney disease: a clinical approach. Int J Mol Sci 2019; 20: 3668.
15. van Driel BO, Schuldt M, Algül S, et al. Metabolomics in severe aortic stenosis reveals intermediates of nitric oxide synthesis as most distinctive markers. Int J Mol Sci 2021; 22: 3569.
16. Pan W, Lian B, Lu H, et al. Prognostic value of asymmetric dimethylarginine in patients with heart failure: a systematic review and meta-analysis. Biomed Res Int 2020; 2020: 6960107.
17. Wang G, Wanga Q, Xu W. Elevated asymmetric dimethylarginine level as biomarkers of adverse outcomes in individuals undergoing coronary angiography/percutaneous coronary interventions: a systematic review and meta-analysis. Coron Artery Dis 2022; 31: E80-6.
18. Chen PY, Sanders PW. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 1991; 88: 1559-67.
19. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-6.
20. Cooke JP, Andon NA, Girerd XJ, et al. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation 1991; 83: 1057-62.
21. Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 1999; 99: 1141-6.
22. Rector TS, Bank AJ, Mullen KA, et al. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 1996; 93: 2135-41.
23. Cagirci G, Cay S, Canga A, et al. Association between plasma asymmetrical dimethylarginine activity and severity of aortic valve stenosis. J Cardiovasc Med (Hagerstown) 2011; 12: 96-101.
24. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017; 38: 2739-86.
25. Ngo DTM, Heresztyn T, Mishra K, et al. Aortic stenosis is associated with elevated plasma levels of asymmetric dimethylarginine (ADMA). Nitric Oxide 2007; 16: 197-201.
26. Parenica J, Nemec P, Tomandl J, et al. Prognostic utility of biomarkers in predicting of one-year outcomes in patients with aortic stenosis treated with transcatheter or surgical aortic valve implantation. PLoS One 2012; 7: e48851.
27. Liao Y, Liu C, Xiong T, et al. Metabolic modulation and potential biomarkers of the prognosis identification for severe aortic stenosis after TAVR by a metabolomics study. Cardiol Res Pract 2020; 2020: 3946913.
28. Schnabel R, Blankenberg S, Lubos E, et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 2005; 97: e53-9.
29. Lüneburg N, Harbaum L, Hennigs JK. The endothelial ADMA/NO pathway in hypoxia-related chronic respiratory diseases. Biomed Res Int 2014; 2014: 501612.
30. Yang Z, Kaye DM. Endothelial dysfunction and impaired L-arginine transport in hypertension and genetically predisposed normotensive subjects. Trends Cardiovasc Med 2006; 16: 118-24.
31. Rattazzi M, Donato M, Bertacco E, et al. l-Arginine prevents inflammatory and pro-calcific differentiation of interstitial aortic valve cells. Atherosclerosis 2020; 298: 27-35.
32. Bogdanova M, Kostina A, Zihlavnikova Enayati K, et al. Inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells. Front Physiol 2018; 9: 1635.
33. Andreasen C, Gislason GH, Køber L, et al. Incidence of ischemic stroke in individuals with and without aortic valve stenosis: a Danish retrospective cohort study. Stroke 2020; 51: 1364-71.
34. Singh GK, van der Bijl P, Goedemans L, et al. Prevalence of aortic valve stenosis in patients with ST-segment elevation myocardial infarction and effect on long-term outcome. Am J Cardiol 2021; 153: 30-5.
35. Paquin A, Marsit O, Deschênes V, et al. Progression of aortic stenosis after an acute myocardial infarction. Open Heart 2022; 9: e002046.
36. Salmani M, Alipoor E, Navid H, et al. Effect of l-arginine on cardiac reverse remodeling and quality of life in patients with heart failure. Clin Nutr 2021; 40: 3037-44.
37. Deste W, Gulino S, Zappulla P, et al. Early recovery of left ventricular systolic function after transcatheter aortic valve implantation. J Cardiovasc Echogr 2018; 28: 166-70.
38. Phua K, Chew NW, Kong WK, et al. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12: 5189-203.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.