Advances in Interventional Cardiology
eISSN: 1897-4295
ISSN: 1734-9338
Advances in Interventional Cardiology/Postępy w Kardiologii Interwencyjnej
Current Issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Results from an international multi-center prospective registry of cardiac catheterizations and percutaneous cardiac interventions guided with three-dimensional imaging

Sebastian Góreczny
1, 2
,
Gareth J. Morgan
3
,
Seong-Ho Kim
4
,
Juan Pablo Sandoval
5
,
Paweł Dryżek
2
,
Tomasz Moszura
2
,
Jenny E. Zablah
4
,
Michael Ross
4
,
José García-Montes
5
,
Carlos Zabal
5
,
Felix Berger
6, 7
,
Titus Kuehne
6, 7
,
So-Ick Jang
4
,
Jung Yoon Kim
4
,
Stephan Schubert
6, 7, 8

  1. Department of Pediatric Cardiology, University Children’s Hospital, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
  2. Department of Cardiology, Polish Mother’s Memorial Hospital, Research Institute, Lodz, Poland
  3. Department of Pediatric Cardiology, University of Colorado, The Heart Institute, Children’s Hospital Colorado, Aurora, Colorado, United States
  4. Department of Pediatrics, Sejong General Hospital, Bucheon, Republic of Korea
  5. Department of Pediatric Cardiology/Congenital Heart Disease, Ignacio Chavez National Institute of Cardiology, Mexico City, Mexico
  6. Deutsches Herzzentrum der Charité, Department of Congenital Heart Disease – Pediatric Cardiology, Berlin, Germany
  7. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
  8. Center for Congenital Heart Disease/Department of Pediatric Cardiology Heart and Diabetes Centre NRW, University Hospital oft he Ruhr University Bochum, Bad Oeynhausen, Germany
Adv Interv Cardiol 2025; 21
Online publish date: 2025/12/30
Article file
- Results from an.pdf  [0.84 MB]
Get citation
 
 
1. Faroux L, Blanpain T, Nazeyrollas P, et al. Effect of modern dose-reduction technology on the exposure of interventional cardiologists to radiation in the catheterization laboratory. JACC Cardiovasc Interv 2018; 11: 222-3. 
2. Góreczny S, Krings G, Hijazi ZM, et al. Pros, cons and future perspectives – three questions on three dimensional guidance for cardiac catheterization in congenital heart disease. Adv Interv Cardiol 2019; 15: 263-73.
3. van der Stelt F, Siegerink SN, Krings GJ, et al. Three-dimensional rotational angiography in pediatric patients with congenital heart disease: a literature review. Pediatr Cardiol 2019; 40: 257-64.
4. Góreczny S, Zahn EM. Giving up knowledge is almost never a good idea: an interview with Dr Evan Zahn. Cardiol Young 2019; 29: 1419-25.
5. Kang SL, Armstrong A, Krings G, et al. Three-dimensional rotational angiography in congenital heart disease: present status and evolving future. Congenit Heart Dis 2019; 14: 1046-57.
6. Bruckheimer E, Goreczny S. Advanced imaging techniques to assist transcatheter congenital heart defects therapies. Progress Pediatr Cardiol 2021; 61: 101373.
7. Glatz AC, Zhu X, Gillespie MJ, et al. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging 2010; 3: 1149-57.
8. Schwartz JG, Neubauer AM, Fagan TE, et al. Potential role of three-dimensional rotational angiography and C-arm CT for valvular repair and implantation. Int J Cardiovasc Imaging 2011; 27: 1205-22. 
9. Fagan TE, Truong UT, Jone PN, et al. Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist Debakey Cardiovasc J 2014; 10: 68-76.
10. Berman DP, Khan DM, Gutierrez Y, et al. The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv 2012; 80: 922-30.
11. Glöckler M, Halbfa J, Koch A, et al. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease – a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 2013; 82: 436-42.
12. Moszura T, Goreczny S, Dryzek P, et al. Three-year-old child with middle aortic syndrome treated by endovascular stent implantation. Pediatr Cardiol 2013; 34: 1027-30.
13. Góreczny S, Haak A, Morgan GJ, et al. Feasibility of airway segmentation from three-dimensional rotational angiography. Cardiol J 2020; 27: 875-8.
14. Borik S, Volodina S, Chaturvedi R, et al. Three-dimensional rotational angiography in the assessment of vascular and airway compression in children after a cavopulmonary anastomosis. Pediatr Cardiol 2015; 36: 1083-99.
15. Stenger A, Dittrich S, Glöckler M. Three-dimensional rotational angiography in the pediatric cath lab: optimizing aortic interventions. Pediatr Cardiol 2016; 37: 528-36.
16. Goreczny S, Morgan GJ, Dryzek P, et al. Initial experience with live three-dimensional image overlay for ductal stenting in hypoplastic left heart syndrome. EuroIntervention 2016; 12: 1527-33.
17. Aldoss O, Fonseca BM, Truong UT, et al. Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 2016; 37: 1211-21.
18. van der Stelt F, Krings GJ, Molenschot MC, et al. Additional value of three-dimensional rotational angiography in the diagnostic evaluation and percutaneous treatment of children with univentricular hearts. EuroIntervention 2018; 14: 637-44. 
19. Goreczny S, Zablah J, McLennan D, et al. Multi-modality imaging for percutaneous pulmonary valve implantation – getting serious about radiation and contrast reduction. Adv Interv Cardiol 2019; 15: 110-5. 
20. O’Callaghan B, Zablah J, Leahy R, et al. Contrast-free percutaneous pulmonary valve replacement: a safe approach for valve-in-valve procedures. Adv Interv Cardiol 2021; 17: 200-9. 
21. Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003; 362: 1877-82.
22. Gutiérrez LF, Silva Rd, Ozturk C, et al. Technology preview: X-ray fused with magnetic resonance during invasive cardiovascular procedures. Catheter Cardiovasc Interv 2007; 70: 773-82.
23. Ratnayaka K, Raman VK, Faranesh AZ, et al. Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging. JACC Cardiovasc Interv 2009; 2: 224-30.
24. Pushparajah K, Chubb H, Razavi R. MR-guided cardiac interventions. Top Magn Reson Imaging 2018; 27: 115-28.
25. Dori Y, Sarmiento M, Glatz AC, et al. X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ Cardiovasc Imaging 2011; 4: 415-24.
26. Abu Hazeem AA, Dori Y, Whitehead KK, et al. X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease. Catheter Cardiovasc Interv 2014; 84: 795-800.
27. Grant EK, Kanter JP, Olivieri LJ, et al. X-ray fused with MRI guidance of pre-selected transcatheter congenital heart disease interventions. Catheter Cardiovasc Interv 2019; 94: 399-408.
28. Hascoët S, Warin-Fresse K, Baruteau AE, et al. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: pros and cons of the main techniques. Arch Cardiovasc Dis 2016; 109: 128-42.
29. Goreczny S, Dryzek P, Moszura T. Use of pre-intervention imaging with a novel image fusion software for guidance of cardiac catheterisation in a patient with pulmonary atresia and major aortopulmonary collaterals. Cardiol Young 2016; 26: 1438-40.
30. Arar Y, Reddy SRV, Kim H, et al. 3D advanced imaging overlay with rapid registration in CHD to reduce radiation and assist cardiac catheterisation interventions. Cardiol Young 2020; 30: 656-62. 
31. Sandoval JP, Aristizabal G, Zabal-Cerdeira C. Aortic stent implantation using live 3-dimensional image fusion guidance. Rev Esp Cardiol 2018; 71: 750.
32. Goreczny S, Dryzek P, Moszura T, et al. 3D image fusion for live guidance of stent implantation in aortic coarctation – magnetic resonance imaging and computed tomography image overlay enhances interventional technique. Adv Interv Cardiol 2017; 13: 269-72. 
33. Nordmeyer J, Kramer P, Berger F, et al. Successful exclusion of an aortic aneurysm with a novel PTFE-tube covered cobalt-chromium stent in a pediatric patient with native coarctation of the aorta. Catheter Cardiovasc Interv 2018; 92: 930-4.
34. Goreczny S, Moszura T, Lukaszewski M, et al. Three-dimensional image fusion of precatheter CT and MRI facilitates stent implantation in congenital heart defects. Rev Esp Cardiol 2019; 72: 512-4.
35. Ehret N, Alkassar M, Dittrich S, et al. A new approach of three-dimensional guidance in paediatric cath lab: segmented and tessellated heart models for cardiovascular interventions in CHD. Cardiol Young 2018; 28: 661-7.
36. Goreczny S, Moszura T, Dryzek P, et al. Three-dimensional image fusion guidance of percutaneous pulmonary valve implantation to reduce radiation exposure and contrast dose: a comparison with traditional two-dimensional and three-dimensional rotational angiographic guidance. Neth Heart J 2017; 25: 91-9.
37. Góreczny S, Morgan GJ, McLennan D, et al. Comparison of fusion imaging and two-dimensional angiography to guide percutaneous pulmonary vein interventions. Kardiol Pol 2022; 80: 476-8.
38. Buytaert D, Vandekerckhove K, Panzer J, et al. Multimodality 3D image fusion with live fluoroscopy reduces radiation dose during catheterization of congenital heart defects. Front Cardiovasc Med 2024; 10: 1292039.
39. Vegulla RV, Greil G, Reddy SV, et al. Biplane 3D overlay guidance for congenital heart disease to assist cardiac catheterization interventions – a pilot study. JRSM Cardiovasc Dis 2024; 13: 20480040241274521.
40. Goreczny S, Dryzek P, Morgan GJ, et al. Novel three-dimensional image fusion software to facilitate guidance of complex cardiac catheterization. Pediatr Cardiol 2017; 38: 1133-42.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2026 Termedia Sp. z o.o.
Developed by Bentus.