1. Faroux L, Blanpain T, Nazeyrollas P, et al. Effect of modern dose-reduction technology on the exposure of interventional cardiologists to radiation in the catheterization laboratory. JACC Cardiovasc Interv 2018; 11: 222-3.
2.
Góreczny S, Krings G, Hijazi ZM, et al. Pros, cons and future perspectives – three questions on three dimensional guidance for cardiac catheterization in congenital heart disease. Adv Interv Cardiol 2019; 15: 263-73.
3.
van der Stelt F, Siegerink SN, Krings GJ, et al. Three-dimensional rotational angiography in pediatric patients with congenital heart disease: a literature review. Pediatr Cardiol 2019; 40: 257-64.
4.
Góreczny S, Zahn EM. Giving up knowledge is almost never a good idea: an interview with Dr Evan Zahn. Cardiol Young 2019; 29: 1419-25.
5.
Kang SL, Armstrong A, Krings G, et al. Three-dimensional rotational angiography in congenital heart disease: present status and evolving future. Congenit Heart Dis 2019; 14: 1046-57.
6.
Bruckheimer E, Goreczny S. Advanced imaging techniques to assist transcatheter congenital heart defects therapies. Progress Pediatr Cardiol 2021; 61: 101373.
7.
Glatz AC, Zhu X, Gillespie MJ, et al. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging 2010; 3: 1149-57.
8.
Schwartz JG, Neubauer AM, Fagan TE, et al. Potential role of three-dimensional rotational angiography and C-arm CT for valvular repair and implantation. Int J Cardiovasc Imaging 2011; 27: 1205-22.
9.
Fagan TE, Truong UT, Jone PN, et al. Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist Debakey Cardiovasc J 2014; 10: 68-76.
10.
Berman DP, Khan DM, Gutierrez Y, et al. The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv 2012; 80: 922-30.
11.
Glöckler M, Halbfa J, Koch A, et al. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease – a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 2013; 82: 436-42.
12.
Moszura T, Goreczny S, Dryzek P, et al. Three-year-old child with middle aortic syndrome treated by endovascular stent implantation. Pediatr Cardiol 2013; 34: 1027-30.
13.
Góreczny S, Haak A, Morgan GJ, et al. Feasibility of airway segmentation from three-dimensional rotational angiography. Cardiol J 2020; 27: 875-8.
14.
Borik S, Volodina S, Chaturvedi R, et al. Three-dimensional rotational angiography in the assessment of vascular and airway compression in children after a cavopulmonary anastomosis. Pediatr Cardiol 2015; 36: 1083-99.
15.
Stenger A, Dittrich S, Glöckler M. Three-dimensional rotational angiography in the pediatric cath lab: optimizing aortic interventions. Pediatr Cardiol 2016; 37: 528-36.
16.
Goreczny S, Morgan GJ, Dryzek P, et al. Initial experience with live three-dimensional image overlay for ductal stenting in hypoplastic left heart syndrome. EuroIntervention 2016; 12: 1527-33.
17.
Aldoss O, Fonseca BM, Truong UT, et al. Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 2016; 37: 1211-21.
18.
van der Stelt F, Krings GJ, Molenschot MC, et al. Additional value of three-dimensional rotational angiography in the diagnostic evaluation and percutaneous treatment of children with univentricular hearts. EuroIntervention 2018; 14: 637-44.
19.
Goreczny S, Zablah J, McLennan D, et al. Multi-modality imaging for percutaneous pulmonary valve implantation – getting serious about radiation and contrast reduction. Adv Interv Cardiol 2019; 15: 110-5.
20.
O’Callaghan B, Zablah J, Leahy R, et al. Contrast-free percutaneous pulmonary valve replacement: a safe approach for valve-in-valve procedures. Adv Interv Cardiol 2021; 17: 200-9.
21.
Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003; 362: 1877-82.
22.
Gutiérrez LF, Silva Rd, Ozturk C, et al. Technology preview: X-ray fused with magnetic resonance during invasive cardiovascular procedures. Catheter Cardiovasc Interv 2007; 70: 773-82.
23.
Ratnayaka K, Raman VK, Faranesh AZ, et al. Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging. JACC Cardiovasc Interv 2009; 2: 224-30.
24.
Pushparajah K, Chubb H, Razavi R. MR-guided cardiac interventions. Top Magn Reson Imaging 2018; 27: 115-28.
25.
Dori Y, Sarmiento M, Glatz AC, et al. X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ Cardiovasc Imaging 2011; 4: 415-24.
26.
Abu Hazeem AA, Dori Y, Whitehead KK, et al. X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease. Catheter Cardiovasc Interv 2014; 84: 795-800.
27.
Grant EK, Kanter JP, Olivieri LJ, et al. X-ray fused with MRI guidance of pre-selected transcatheter congenital heart disease interventions. Catheter Cardiovasc Interv 2019; 94: 399-408.
28.
Hascoët S, Warin-Fresse K, Baruteau AE, et al. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: pros and cons of the main techniques. Arch Cardiovasc Dis 2016; 109: 128-42.
29.
Goreczny S, Dryzek P, Moszura T. Use of pre-intervention imaging with a novel image fusion software for guidance of cardiac catheterisation in a patient with pulmonary atresia and major aortopulmonary collaterals. Cardiol Young 2016; 26: 1438-40.
30.
Arar Y, Reddy SRV, Kim H, et al. 3D advanced imaging overlay with rapid registration in CHD to reduce radiation and assist cardiac catheterisation interventions. Cardiol Young 2020; 30: 656-62.
31.
Sandoval JP, Aristizabal G, Zabal-Cerdeira C. Aortic stent implantation using live 3-dimensional image fusion guidance. Rev Esp Cardiol 2018; 71: 750.
32.
Goreczny S, Dryzek P, Moszura T, et al. 3D image fusion for live guidance of stent implantation in aortic coarctation – magnetic resonance imaging and computed tomography image overlay enhances interventional technique. Adv Interv Cardiol 2017; 13: 269-72.
33.
Nordmeyer J, Kramer P, Berger F, et al. Successful exclusion of an aortic aneurysm with a novel PTFE-tube covered cobalt-chromium stent in a pediatric patient with native coarctation of the aorta. Catheter Cardiovasc Interv 2018; 92: 930-4.
34.
Goreczny S, Moszura T, Lukaszewski M, et al. Three-dimensional image fusion of precatheter CT and MRI facilitates stent implantation in congenital heart defects. Rev Esp Cardiol 2019; 72: 512-4.
35.
Ehret N, Alkassar M, Dittrich S, et al. A new approach of three-dimensional guidance in paediatric cath lab: segmented and tessellated heart models for cardiovascular interventions in CHD. Cardiol Young 2018; 28: 661-7.
36.
Goreczny S, Moszura T, Dryzek P, et al. Three-dimensional image fusion guidance of percutaneous pulmonary valve implantation to reduce radiation exposure and contrast dose: a comparison with traditional two-dimensional and three-dimensional rotational angiographic guidance. Neth Heart J 2017; 25: 91-9.
37.
Góreczny S, Morgan GJ, McLennan D, et al. Comparison of fusion imaging and two-dimensional angiography to guide percutaneous pulmonary vein interventions. Kardiol Pol 2022; 80: 476-8.
38.
Buytaert D, Vandekerckhove K, Panzer J, et al. Multimodality 3D image fusion with live fluoroscopy reduces radiation dose during catheterization of congenital heart defects. Front Cardiovasc Med 2024; 10: 1292039.
39.
Vegulla RV, Greil G, Reddy SV, et al. Biplane 3D overlay guidance for congenital heart disease to assist cardiac catheterization interventions – a pilot study. JRSM Cardiovasc Dis 2024; 13: 20480040241274521.
40.
Goreczny S, Dryzek P, Morgan GJ, et al. Novel three-dimensional image fusion software to facilitate guidance of complex cardiac catheterization. Pediatr Cardiol 2017; 38: 1133-42.