Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Advances in Interventional Cardiology
eISSN: 1897-4295
ISSN: 1734-9338
Advances in Interventional Cardiology/Postępy w Kardiologii Interwencyjnej
Current Issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2025
vol. 21
 
Share:
Share:
Original paper

Role of circulating microRNAs in tetralogy of Fallot

Claudia Huesca-Gomez
1
,
Nadia Gonzalez-Moyotl
1
,
Silvia Romero-Maldonado
2
,
Reyna Samano
3
,
Ricardo Gamboa
1

  1. Physiology Department, Instituto Nacional de Cardiologia Ignacio Chávez, México
  2. Coordination of the Human Milk Bank. Instituto Nacional de Perinatología, México
  3. Coordination of Nutrition and Bioprogramming. Instituto Nacional de Perinatología, México
Adv Interv Cardiol 2025; 21, 2 (80): 247–254
Online publish date: 2025/06/04
Article file
- role of circulating.pdf  [0.73 MB]
Get citation
 
 
1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-900.
2. Latus H, Hachmann P, Gummel K, et al. Impact of residual right ventricular outflow tract obstruction on biventricular strain and synchrony in patients after repair of Tetralogy of Fallot: a cardiac magnetic resonance feature tracking study. Eur J Cardiothorac Surg 2015; 48: 83-90.
3. Polat T. Propranolol palliation after right ventricular outflow tract stenting reduces the reintervention rate until complete repair of Fallot tetralogy and variants. Adv Interv Cardiol 2024; 20: 455-60.
4. Castle JC, Zhang C, Shah JK, et al. Expression of 24 426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat Genet 2008; 40: 1416-25.
5. Saliminejad K, Khorram-Khorshid HR, Soleymani-Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234: 5451-65.
6. Grunert M, Appelt S, Dunkel I, et al. Altered microRNA and target gene expression related to tetralogy of Fallot. Sci Rep 2019; 13: 19063.
7. Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development. Pediatr Cardiol 2010; 31: 349-56.
8. Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 2017; 120: 381-99.
9. Thum T, Condorelli G. Long noncoding RNAs, and micro­RNAs in cardiovascular pathophysiology. Circ Res 2015; 116: 751-62.
10. Wu XG, Zhou CF, Zhang YM, et al. Cancer-derived exosomal MiR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 2019; 22: 397-410.
11. Eddy AA. The TGF- route to renal fibrosis is not linear: the MiR-21 viaduct. J Am Society of Nephrol 2011; 22: 1573-5.
12. Yuan X, Pan J, Wen L, et al. MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN. Front Cell Dev Biol 2019; 7: 249.
13. Icli B, Dorbala P, Feinberg MW. An emerging role for the MiR-26 family in cardiovascular disease. Trends Cardiovasc Med 2014; 24: 241-8.
14. Clement M, Viggiani G, Chen YW, et al. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21: 4370.
15. Wang G, Wang B, Yang P. Epigenetics in congenital heart disease. J Am Heart Assoc 2022; 11: e025163.
16. Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 2013; 424: 66-72.
17. González-Moyotl N, Huesca-Gómez C, Torres-Paz YE, et al. Paediatrics congenital heart disease is associated with plasma miRNAs. Pediatr Res 2024; 96: 1220-7.
18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−CT method. Methods 2021; 25: 402-8.
19. Diaz-Frias J, Horenstein MS, Guillaume M. Tetralogy of Fallot. In: StatPearls [Internet]. StatPearls Publishing. Treasure Island (FL): StatPearls Publishing; 2024 Feb 14.
20. Christianson A, Howson C, Modell B. March of dimes global report on birth defects: the hidden toll of dying and disabled children. White Plains, NY: March of Dimes Birth Defect Foundation 2006; 1-98.
21. Ma X, Conklin DJ, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015; 6: 7151.
22. Ge Y, Zhang L, Nikolova M, et al. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(*) in SCC progression. Nat Cell Biol 2016; 18: 111-21.
23. Zhou X, Lu Z, Wang T, et al. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a MiRNA expression analysis. Gene 2018; 673: 181-93.
24. Zhong L, Yang H, Zhu B, et al. The TBX1/MiR-193a-3p/TGF-2 axis mediates CHD by promoting ferroptosis. Oxid Med Cell Longev 2022; 2022: 5130546.
25. Telkoparan-Akillilar P, Cevik D, Yilmaz A. Expression patterns of MiR-34a, MiR-125b, MiR-221 and antioxidant gene NRF2 in plasma samples of patients with atherosclerosis. J Biosci 2022; 47: 1.
26. Lacedonia D, Scioscia G, Palladino GP, et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 2018; 9: 35114-22.
27. Sayed D, He M, Hong C, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 2010; 285: 20281-90.
28. Han Y, Cai X, Pan M, et al. MicroRNA-21-5p acts via the PTEN/Akt/FOXO3a signaling pathway to prevent cardiomyocyte injury caused by high glucose/high-fat conditions. Exp Ther Med 2022; 23: 230.
29. Abu-Halima M, Meese E, Keller A, et al. Analysis of circulating microRNAs in patients with repaired tetralogy of Fallot with and without heart failure. J Transl Med 2017; 15: 156.
30. Liang YZ, Dong J, Zhang J, et al. identification of neuroendocrine stress response-related circulating microRNAs as biomarkers for type 2 diabetes mellitus and insulin resistance. Front Endocrinol (Lausanne) 2018; 9: 132.
31. Fadda A, Syed N, Mackeh R, et al. Genome-wide regulatory roles of the C2H2-type zinc finger protein ZNF764 on the glucocorticoid receptor. Sci Rep 2017; 7: 41598.
32. Chen YJ, Guo YN, Shi K, et al. Down-regulation of micro­RNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Resp Res 2019; 20: 48.
33. Chang Z, Zhang Q, Feng Q, et al. Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation. Dev Biol 2010; 347: 384-91.
34. Vandoorne K, Vandsburger MH, Weisinger K, et al. Multimodal imaging reveals a role for Akt1 in fetal cardiac development. Physiol Rep 2013; 1: e00143.
35. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20: 3347-65.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.