1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-900.
2.
Latus H, Hachmann P, Gummel K, et al. Impact of residual right ventricular outflow tract obstruction on biventricular strain and synchrony in patients after repair of Tetralogy of Fallot: a cardiac magnetic resonance feature tracking study. Eur J Cardiothorac Surg 2015; 48: 83-90.
3.
Polat T. Propranolol palliation after right ventricular outflow tract stenting reduces the reintervention rate until complete repair of Fallot tetralogy and variants. Adv Interv Cardiol 2024; 20: 455-60.
4.
Castle JC, Zhang C, Shah JK, et al. Expression of 24 426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat Genet 2008; 40: 1416-25.
5.
Saliminejad K, Khorram-Khorshid HR, Soleymani-Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234: 5451-65.
6.
Grunert M, Appelt S, Dunkel I, et al. Altered microRNA and target gene expression related to tetralogy of Fallot. Sci Rep 2019; 13: 19063.
7.
Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development. Pediatr Cardiol 2010; 31: 349-56.
8.
Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 2017; 120: 381-99.
9.
Thum T, Condorelli G. Long noncoding RNAs, and microRNAs in cardiovascular pathophysiology. Circ Res 2015; 116: 751-62.
10.
Wu XG, Zhou CF, Zhang YM, et al. Cancer-derived exosomal MiR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 2019; 22: 397-410.
11.
Eddy AA. The TGF- route to renal fibrosis is not linear: the MiR-21 viaduct. J Am Society of Nephrol 2011; 22: 1573-5.
12.
Yuan X, Pan J, Wen L, et al. MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN. Front Cell Dev Biol 2019; 7: 249.
13.
Icli B, Dorbala P, Feinberg MW. An emerging role for the MiR-26 family in cardiovascular disease. Trends Cardiovasc Med 2014; 24: 241-8.
14.
Clement M, Viggiani G, Chen YW, et al. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21: 4370.
15.
Wang G, Wang B, Yang P. Epigenetics in congenital heart disease. J Am Heart Assoc 2022; 11: e025163.
16.
Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 2013; 424: 66-72.
17.
González-Moyotl N, Huesca-Gómez C, Torres-Paz YE, et al. Paediatrics congenital heart disease is associated with plasma miRNAs. Pediatr Res 2024; 96: 1220-7.
18.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−CT method. Methods 2021; 25: 402-8.
19.
Diaz-Frias J, Horenstein MS, Guillaume M. Tetralogy of Fallot. In: StatPearls [Internet]. StatPearls Publishing. Treasure Island (FL): StatPearls Publishing; 2024 Feb 14.
20.
Christianson A, Howson C, Modell B. March of dimes global report on birth defects: the hidden toll of dying and disabled children. White Plains, NY: March of Dimes Birth Defect Foundation 2006; 1-98.
21.
Ma X, Conklin DJ, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015; 6: 7151.
22.
Ge Y, Zhang L, Nikolova M, et al. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(*) in SCC progression. Nat Cell Biol 2016; 18: 111-21.
23.
Zhou X, Lu Z, Wang T, et al. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a MiRNA expression analysis. Gene 2018; 673: 181-93.
24.
Zhong L, Yang H, Zhu B, et al. The TBX1/MiR-193a-3p/TGF-2 axis mediates CHD by promoting ferroptosis. Oxid Med Cell Longev 2022; 2022: 5130546.
25.
Telkoparan-Akillilar P, Cevik D, Yilmaz A. Expression patterns of MiR-34a, MiR-125b, MiR-221 and antioxidant gene NRF2 in plasma samples of patients with atherosclerosis. J Biosci 2022; 47: 1.
26.
Lacedonia D, Scioscia G, Palladino GP, et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 2018; 9: 35114-22.
27.
Sayed D, He M, Hong C, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 2010; 285: 20281-90.
28.
Han Y, Cai X, Pan M, et al. MicroRNA-21-5p acts via the PTEN/Akt/FOXO3a signaling pathway to prevent cardiomyocyte injury caused by high glucose/high-fat conditions. Exp Ther Med 2022; 23: 230.
29.
Abu-Halima M, Meese E, Keller A, et al. Analysis of circulating microRNAs in patients with repaired tetralogy of Fallot with and without heart failure. J Transl Med 2017; 15: 156.
30.
Liang YZ, Dong J, Zhang J, et al. identification of neuroendocrine stress response-related circulating microRNAs as biomarkers for type 2 diabetes mellitus and insulin resistance. Front Endocrinol (Lausanne) 2018; 9: 132.
31.
Fadda A, Syed N, Mackeh R, et al. Genome-wide regulatory roles of the C2H2-type zinc finger protein ZNF764 on the glucocorticoid receptor. Sci Rep 2017; 7: 41598.
32.
Chen YJ, Guo YN, Shi K, et al. Down-regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Resp Res 2019; 20: 48.
33.
Chang Z, Zhang Q, Feng Q, et al. Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation. Dev Biol 2010; 347: 384-91.
34.
Vandoorne K, Vandsburger MH, Weisinger K, et al. Multimodal imaging reveals a role for Akt1 in fetal cardiac development. Physiol Rep 2013; 1: e00143.
35.
Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20: 3347-65.