eISSN: 1897-4309
ISSN: 1428-2526
Contemporary Oncology/Współczesna Onkologia
Current issue Archive Manuscripts accepted About the journal Supplements Addendum Special Issues Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
4/2018
vol. 22
 
Share:
Share:
more
 
 
abstract:
Case report

Sinusoidal obstruction syndrome in a paediatric patient with acute lymphoblastic leukaemia after completion of reinduction therapy according to ALL Intercontinental Berlin-Frankfurt-Münster 2009

Dorota Pawlik-Gwozdecka, Ninela Irga-Jaworska, Marek Tomaszewski, Elżbieta Adamkiewicz-Drożyńska

Contemp Oncol (Pozn) 2018; 22 (4): 266-269
Online publish date: 2018/12/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Sinusoidal obstruction syndrome (SOS), also termed veno-occlusive disease (VOD) of the liver, is a well-known complication of haematopoietic stem cell transplantation (HSCT) both in children and adults. In the medical literature there are occasional reports of SOS in patients receiving conventional chemotherapy. In children with solid tumours this entity occurs during treatment of nephroblastoma, rhabdomyosarcoma, and medulloblastoma. In the late 1990s SOS was quite often observed as the complication of oral 6-thioguanine (6-TG) in patients suffering from acute lymphoblastic leukaemia (ALL), who received 6-TG throughout maintenance. In current protocols, the syndrome has become uncommon because treatment with 6-TG is limited to two weeks of oral therapy. Here, we report a case of a nine-year-old boy with ALL, who developed sinusoidal obstruction syndrome shortly after completing the reinduction block of chemotherapy (cyclophosphamide, cytarabine, thioguanine) according to the ALL Intercontinental Berlin-Frankfurt-Münster 2009 (ALL IC BFM 2009) treatment protocol.
keywords:

acute lymphoblastic leukaemia, veno-occlusive disease, sinusoidal obstruction syndrome, children

references:
Mohty M, Malard F, Abecassis M, et al. Sinusoidal obstruction syndrome/veno-occlusive disease: current situation and perspectives-a position statement from the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2015; 50: 781-789.
Corbacioglu S, Carreras E, Ansari M, et al. Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transplant 2018; 53: 138.
Al Hadithy, AF, de Boer, NK, Derijks, LJ, et al. Thiopurines in inflammatory bowel disease: Pharmacogenetics, therapeutic drug monitoring and clinical recommendations. Dig Liver Dis 2005; 37: 282-297.
Schmiegelow K, Attarbaschi A, Barzilai S, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol 2016; 17: e231-e239.
Strouse C, Richardson P, Prentice G, et al. Defibrotide for treatment of severe veno-occlusive disease in pediatrics and adults: an exploratory analysis using data from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2016; 22: 1306-1312.
Deleve LD. Sinusoidal obstruction syndrome. Gastroenterol Hepatol (N Y) 2008; 4: 101-110.
McAtee CL, Schneller N, Brackett J, Bernhardt MB, Schafer ES. Treatment-related sinusoidal obstruction syndrome in children with de novo acute lymphoblastic leukemia during intensification. Cancer Chemother Pharmacol 2017; 80: 1261-1264.
Cecen E, Uysal KM, Ozguven A, Gunes D, Irken G, Olgun N. Venoocclusive disease in a child with rhabdomyosarcoma after conventional chemotherapy: report of a case and review of the literature. Pediatr Hematol Oncol 2007; 24: 615-621.
Sulis ML, Bessmertny O, Granowetter L, Weiner M, Kelly KM. Veno-occlusive disease in pediatric patients receiving actinomycin D and vincristine only for the treatment of rhabdomyosarcoma. J Pediatr Hematol Oncol 2004; 26: 843-846.
D’Antiga L, Baker A, Pritchard J, et al. Veno-occlusive disease with multi-organ involvement following actinomycin-D. Eur J Cancer 2001; 37: 1141-1148.
Elli M, Pinarli FG, Dagdemir A, et al. Veno-occlusive disease of the liver in a child after chemotherapy for brain tumor. Pediatr Blood Cancer 2006; 46: 521-523.
Kotecha RS, Buckland A, Phillips MB, Cole CH, Gottardo NG. Hepatic sinusoidal obstruction syndrome during chemotherapy for childhood medulloblastoma: report of a case and review of the literature. J Pediatr Hematol Oncol 2014; 36: 76-80.
Cesaro S, Pillon M, Talenti E, et al. A prospective survey on incidence, risk factors and therapy of hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation. Haematologica 2005, 90: 1396-1404.
Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004; 26: 186-191.
de Boer NK, van Bodegraven AA, Jharap B, et al. Drug Insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 686-694.
Vora A, Mitchell CD, Lennard L, et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 2006; 368: 1339-1348.
Stork LC, Matloub Y, Broxson E, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children’s Oncology Group CCG-1952 clinical trial. Blood 2010; 115: 2740-2748.
Calabrese E, Hanauer SB. Assessment of non-cirrhotic portal hypertension associated with thiopurine therapy in inflammatory bowel disease. J Crohns Colitis 2011; 5: 48-53.
DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 1996; 23: 589-599.
Wang X, Kanel GC, DeLeve LD. Support of sinusoidal endothelial cell glutathione prevents hepatic veno-occlusive disease in the rat. Hepatology 2000; 31: 428-434.
Stoneham S, Lennard L, Coen P, Lilleyman J, Saha V. Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukemia. Brit J Haematol 2003; 123: 100-102.
Oancea I, Png CW, Das I, et al. A novel mouse model of venoocclusive disease provides strategies to prevent thioguanineinduced hepatic toxicity. Gut 2013; 62: 594-605.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe