Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Contemporary Oncology
eISSN: 1897-4309
ISSN: 1428-2526
Contemporary Oncology/Współczesna Onkologia
Current issue Archive Manuscripts accepted About the journal Supplements Addendum Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2025
vol. 29
 
Share:
Share:
Review paper

The role of tumor-associated macrophages and PD-1/PD-L1 networking in colorectal cancer

Melina Yerolatsite
1
,
Nanteznta Torounidou
1
,
Anna-Lea Amylidi
1
,
George Zarkavelis
1, 2
,
Loizos Hadjigeorgiou
3
,
Evangeli Lampri
4
,
Christina Bali
5
,
Vaia Georvasili
5
,
Eleftherios Kampletsas
1, 2
,
Davide Mauri
1

  1. Department of Medical Oncology, University of Ioannina, Ioannina, Greece
  2. Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
  3. Department of General Surgery, General Hospital of Agios Nicolaos, Crete, Greece
  4. Department of Pathology, University of Ioannina, Ioannina, Greece
  5. Department of General Surgery, University Hospital of Ioannina, Ioannina, Greece
Contemp Oncol (Pozn) 2025; 29 (2): 123–130
Online publish date: 2025/05/09
Article file
Get citation
 
PlumX metrics:
 
1. Global Cancer Observatory. Global Cancer Observatory, World Health Organization. Available from: https://gco.iarc.fr/ (accessed: 3/1/2025).
2. NCCN Guidelines. Colorectal Cancer. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology, Version 3, 2025.
3. World Health Organization. Colorectal cancer. Geneva: WHO; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed: 03.01.2025).
4. Cervantes A, Adam R, Roselló S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34: 10-32.
5. Alwers E, Jansen L, Blaker H, et al. Microsatellite instability and survival after adjuvant chemotherapy among stage II and III colon cancer patients: results from a population-based study. Mol Oncol 2020; 14: 363-372.
6. Zarkavelis G, Amylidi AL, Torounidou N, et al. Exploring RAS mutation incidence and temporal heterogeneity in metastatic colorectal cancer patients – a single-institution experience utilizing circulating tumour DNA. Contemp Oncol (Pozn) 2024; 28: 45-50.
7. Żok J, Bieńkowski M, Radecka B, et al. Treatment outcomes of patients with BRAFV600E-mutated metastatic colorectal cancer: a Polish retrospective cohort study. Contemp Oncol (Pozn) 2024; 28: 297-303.
8. Johnson D, Chee CE, Wong W, et al. Current advances in targeted therapy for metastatic colorectal cancer – clinical translation and future directions. Cancer Treat Rev 2024; 125: 102700.
9. Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer 2019; 109: 70-83.
10. Ikoma N, Raghav K, Chang G. An update on randomized clinical trials in metastatic colorectal carcinoma. Surg Oncol Clin N Am 2017; 26: 667-687.
11. Temraz S, Mukherji D, Shamseddine A. Sequencing of treatment in metastatic colorectal cancer: where to fit the target. World J Gastroenterol 2014; 20: 1993-2004.
12. Torounidou N, Yerolatsite M, Zarkavelis G, et al. Treatment sequencing in metastatic colorectal cancer. Contemp Oncol (Pozn) 2024; 28: 283-290.
13. Babkoff A, Zick A, Hubert A, et al. Unleashing the power of anti-HER2 therapies in metastatic colorectal cancer: paving the way for a brighter future. ESMO Gastrointest Oncol 2024; 3: 100032.
14. Bikhchandani M, Amersi F, Hendifar A, et al. POLE-mutant colon cancer treated with PD-1 blockade showing clearance of circulating tumor DNA and prolonged disease-free interval. Genes (Basel) 2023; 8: 1054.
15. Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016; 1: 207-216.
16. André T, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy in microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer: 5-year follow-up from the randomized phase 3 KEYNOTE-177 study. Ann Oncol 2024; 24: S0923-7534.
17. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18: 1182-1191.
18. Yerolatsite M, Torounidou N, Gogadis A, et al. TAMs and PD-1 networking in gastric cancer: a review of the literature. Cancers (Basel) 2023; 16: 1.
19. Song J, Xiao T, Li M, et al. Tumor-associated macrophages: potential therapeutic targets and diagnostic markers in cancer. Pathol Res Pract 2023; 249: 154739.
20. Deng Y, Liu H, Xie L, et al. The efficacy and safety of ivonescimab with or without ligufalimab in combination with FOLFOXIRI as first-line treatment for metastatic colorectal cancer (mCRC). ESMO Congress 2024.
21. Hu M, Fan JX, He ZY, et al. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42.
22. Chu T, Ning Y, Ma M, et al. Phillygenin regulates the colorectal cancer tumor microenvironment by inhibiting hypoxia-inducible factor 1 alpha. Cytotechnology 2025; 77: 1.
23. Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 2020; 9: 1512.
24. Inagaki K, Kunisho S, Takigawa H, et al. Role of tumor-associated macrophages at the invasive front in human colorectal cancer progression. Cancer Sci 2021; 112: 112.
25. Galbraith NJ, Wood C, Steele CW. Targeting metastatic colorectal cancer with immune oncological therapies. Cancer 2021; 13: 3566.
26. Yang Q, Guo N, Zhou Y, et al. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10: 2113-2124.
27. Pollard JW, Cassetta L. A timeline of tumour-associated macrophage biology. Nat Rev Cancer 2023; 23: 4.
28. Feng M, Jiang W, Kim BYS, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19: 568-576.
29. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545: 495-499.
30. Edin S, Wikberg ML, Rutegård J, et al. Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells. PLoS One 2013; 8: e74982.
31. Forssell J, Öberg Å, Henriksson ML, et al. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 2007; 13: 1472-1479.
32. Zhou Q, Peng RQ, Wu XJ, et al. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 2010; 8: 13.
33. Yang C, Wei C, Wang S, et al. Elevated CD163+/CD68+ ratio at tumor invasive front is closely associated with aggressive phenotype and poor prognosis in colorectal cancer. Int J Biol Sci 2019; 15: 984-996.
34. Kang JC, Chen JS, Lee CH, et al. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 2010; 102: 242-247.
35. Pernot S, Terme M, Voron T, et al. Colorectal cancer and immunity: what we know and perspectives. World J Gastroenterol 2014; 20: 3738-3750.
36. Yang Z, Zhang M, Peng R, et al. The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis 2020; 35: 1197-1210.
37. Parcesepe P, Giordano G, Laudanna C. Cancer-associated immune resistance and evasion of immune surveillance in colorectal cancer. Gastroenterol Res Pract 2016; 2016: 6261721.
38. Cantero-Cid R, Casas-Martin J, Hernández-Jiménez E, et al. PD-L1/PD-1 crosstalk in colorectal cancer: are we targeting the right cells? BMC Cancer 2018; 18: 945.
39. Cheruku S, Rao V, Pandey R, et al. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: current research in macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116: 109569.
40. Giannone G, Ghisoni E, Genta S, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J Mol Sci 2020; 21: 4414.
41. International Agency for Research on Cancer. Colorectal cancer. IARC 2024.
42. Sehgal M, Ramu S, Muralidharan S, et al. Characterizing heterogeneity along EMT and metabolic axes in colorectal cancer reveals underlying consensus molecular subtype-specific trends. Transl Oncol 2024; 40: 101845.
43. Basak U, Sarkar T, Mukherjee S, et al. Tumor-associated macro- phages: an effective player of the tumor microenvironment.Front Immunol 2023; 14: 1295257.
44. Guo XW, Lei R, Zhou QN, et al. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy gene signatures. BMC Cancer 2023; 23: 773.
45. Cavnar MJ, Turcotte S, Katz SC, et al. Tumor-associated macrophage infiltration in colorectal cancer liver metastases is associated with better outcome. Ann Surg Oncol 2017; 24: 1835-1843.
46. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496: 445-455.
47. Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14: 717-734.
48. Herrera M, Herrera A, Dominguez G, et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci 2013; 104: 437-444.
49. Kather JN, Halama N, Jaeger D. Genomics and emerging biomark- ers for immunotherapy of colorectal cancer. Semin Cancer Biol 2018; 52: 189-197.
50. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015; 21: 938-945.
51. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18: 248-262.
52. Halama N, Zoernig I, Berthel A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy. Cancer Cell 2016; 29: 587-601.
53. Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL-6. Clin Cancer Res 2017; 23: 7375-7387.
54. Braster R, Bogels M, Beelen RH, et al. The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology 2027; 222: 701-706.
55. Schlitzer A, Schultze JL. Tissue-resident macrophages – how to humanize our knowledge. Immunol Cell Biol 2017; 95: 456-463.
56. Logie C, Stunnenberg HG. Epigenetic memory: a macrophage perspective. Semin Immunol 2017; 28: 359-367.
57. Cuaranta-Monroy I, Kiss M, Simandi Z, et al. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells—revealing complexity through systems biology. Eur J Clin Invest 2015; 45: 964-976.
58. Gonzalez-Martin A, Gomez L, Lustgarten J, et al. Maximal T cell- mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res 2011; 71: 5455-5466.
59. Liu G, Tu D, Lewis M, et al. Fc-gamma receptor polymorphisms, cetuximab therapy, and survival in the NCIC CTG CO.17 trial of colorectal cancer. Clin Cancer Res 2016; 22: 2435-2442.
60. Rodriguez J, Zarate R, Bandres E, et al. Fc gamma receptor polymorphisms as predictive markers of cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer. Eur J Cancer 2012; 48: 1774-1800.
61. Bibeau F, Lopez-Crapez E, Di Fiore F, et al. Impact of FcRIIa-FcRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 2009; 27: 1122-1129.
62. Yang Q, Guo N, Zhou Y, et al. The role of tumor-associated mac- rophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10: 2113-2124.
63. Geva R, Vecchione L, Kalogeras KT, et al. FCGR polymorphisms and cetuximab efficacy in chemorefractory metastatic colorectal cancer: an international consortium study. Gut 2015; 64: 921-928.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.