Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Review paper

A new conceptual framework for managing hamstring injury risk in soccer – implementing a data-informed approach: a narrative review

Guglielmo Pillitteri
1, 2
,
Filipe Manuel Clemente
3, 4, 5
,
Marco Petrucci
1
,
Hugo Sarmento
6
,
Antonio Figueiredo
6
,
Tindaro Bongiovanni
7
,
Antonino Bianco
1
,
Giuseppe Battaglia
1
,
Tim J. Gabbett
8

  1. Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
  2. High-Performance Unit, Palermo FC, Italy
  3. Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portuga
  4. Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
  5. Sport Physical Activity and Health Research & Innovation Center, Viana do Castelo, Portuga
  6. Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
  7. Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
  8. Gabbett Performance Solutions, Brisbane, QLD, Australia
Biol Sport. 2026;43:329–353
Online publish date: 2025/09/16
Article file
- 26_04719_Article.pdf  [2.23 MB]
Get citation
 
PlumX metrics:
 
1. Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011; 45(7):553–558. doi: 10.1136/bjsm .2009.060582.
2. Ekstrand J, Waldén M, Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016; 50(12):731–737. doi: 10.1136/bjsports-2015-095359.
3. Vermeulen R, van Dyk N, Whiteley R, et al. Injury-inciting circumstances of sudden-onset hamstring injuries: video analyses of 63 match injuries in male professional football players in the Qatar Stars League (2013–2020). Br J Sports Med. 2024; 58(20):1196–1204. doi: 10.1136/bjsports-2023-106722.
4. Bittencourt NFN, Meeuwisse WH, Mendonça LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016; 50(21):1309–1314. doi: 10.1136/bjsports-2015-095850.
5. Buchheit M, Settembre M, Hader K, McHugh D. From high-speed running to hobbling on crutches: A machine learning perspective on the relationships between training doses and match injury trends. Sport Perform Sci Rep. 2023; 216:1–11.
6. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016; 50(5):273–280. doi: 10.1136/bjsports-2015-095788.
7. Gabbett TJ. Debunking the myths about training load, injury and performance: empirical evidence, hot topics and recommendations for practitioners. Br J Sports Med. 2020; 54(1):58–66. doi: 10.1136/bjsports-2018-099784.
8. Impellizzeri FM, Menaspà P, Coutts AJ, Kalkhoven J, Menaspà MJ. Training load and its role in injury prevention, part I: back to the future. J Athl Train. 2020; 55(9):885–892. doi: 10.4085/1062-6050-500-19.
9. Kalkhoven JT, Watsford ML, Coutts AJ, Edwards WB, Impellizzeri FM. Training load and injury: causal pathways and future directions. Sports Med. 2021; 51:1137–1150. doi: 10.1007 /s40279-020-01413-6.
10. Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sports Med. 2007; 17(3):215–219. doi: 10.1097 /JSM.0b013e3180592a48.
11. Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload—injury aetiology model. Br J Sports Med. 2017; 51(5):428–435. doi: 10.1136 /bjsports-2016-096040.
12. Gregson W, Di Salvo V, Varley MC, et al. Harmful association of sprinting with muscle injury occurrence in professional soccer match-play: a two-season, league-wide exploratory investigation from the Qatar Stars League. J Sci Med Sport. 2020; 23(2):134–138. doi: 10.1016/j.jsams.2019.08.289.
13. Bache-Mathiesen LK, Andersen TE, Dalen-Lorentsen T, et al. A new statistical approach to training load and injury risk: separating the acute from the chronic load. Biol Sport. 2024; 41(1):119–134. doi: 10.5114 /biolsport.2024.127388.
14. Pillitteri G, Petrigna L, Ficarra S, et al. Relationship between external and internal load indicators and injury using machine learning in professional soccer: a systematic review and meta-analysis. Res Sports Med. 2024; 1–37. doi: 10.1080/15438627.2023 .2297190.
15. Kalkhoven JT, Lukauskis-Carvajal M, Sides DL, McLean BD, Watsford ML. A conceptual exploration of hamstring muscle–tendon functioning during the late-swing phase of sprinting: the importance of evidence-based hamstring training frameworks. Sports Med. 2023; 53(12):2321–2346. doi: 10.1007/s40279-023-01904-2.
16. Meeuwisse W. Assessing causation in sport injury: a multifactorial model. Clin J Sports Med. 1994; 166–170. doi: 10 .1097/00042752-199407000-00004.
17. Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019; 14(2):270–273. doi: 10.1123/ijspp.2018-0935.
18. Andrade R, Wik EH, Rebelo-Marques A, et al. Is the acute: chronic workload ratio (ACWR) associated with risk of time-loss injury in professional team sports? A systematic review of methodology, variables and injury risk in practical situations. Br J Sports Med. 2020; 50(9):1613–1635. doi: 10.1007/s40279-020-01308-6.
19. Impellizzeri FM, McCall A, Ward P, Bornn L, Coutts AJ. Training load and its role in injury prevention, part 2: conceptual and methodologic pitfalls. J Athl Train. 2020; 55(9):893–901. doi: 10.4085/1062-6050-501-19.
20. Kalkhoven JT. Athletic injury research: frameworks, models and the need for causal knowledge. Sports Med. 2024; 54(5):1121–1137. doi: 10.1007/ s40279-024-02008-1.
21. Buchheit M, Settembre M, Hader K, McHugh D. From high-speed running to hobbling on crutches: A machine learning perspective on the relationships between training doses and match injury trends. Sport Perform Sci Rep. 2023; 216:1–11.
22. Buchheit M, Settembre M, Hader K, McHugh D. Exposures to near-to maximal speed running bouts during different turnarounds in elite football: association with match hamstring injuries. Biol Sport. 2023; 40(4):1057–1067. doi: 10.5114/ biolsport.2023.125595.
23. Edouard P, Mendiguchia J, Guex K, et al. Sprinting: a potential vaccine for hamstring injury? Sport Perform Sci Rep. 2019.
24. Bowen L, Gross AS, Gimpel M, Bruce-Low S, Li FX. Spikes in acute: chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: a comprehensive 3-year study. Br J Sports Med. 2020; 54(12):731–738. doi: 10.1136/ bjsports-2018-099422.
25. Windt J, Zumbo BD, Sporer B, MacDonald K, Gabbett TJ. Why do workload spikes cause injuries, and which athletes are at higher risk? Mediators and moderators in workload–injury investigations. Br J Sports Med. 2017; 51(5):993–994. doi: 10.1136/bjsports-2016-097255.
26. McArdle W, Katch F, Katch V. Exercise physiology: nutrition, energy, and human performance. 2010: Lippincott Williams & Wilkins.
27. Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998; 30(7):1164–1168. doi: 10.1097/00005768- 199807000-00023.
28. Hostrup M, Bangsbo J. Performance adaptations to intensified training in top-level football. Sports Med. 2023; 53(3):577–594. doi: 10.1007/ s40279-022-01791-z.
29. Rossi A, Pappalardo L, Cintia P. A narrative review for a machine learning application in sports: an example based on injury forecasting in soccer. Sports. 2021; 10(1):5. doi: 10.3390/sports10010005.
30. Rossi A, Pappalardo L, Cintia P, Iaia FM, Fernàndez J, Medina D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS One. 2018; 13(7):e0201264. doi: 10.1371/ journal.pone.0201264.
31. Vallance E, Sutton-Charani N, Imoussaten A, Montmain J, Perrey S. Combining internal and external training loads to predict non-contact injuries in soccer. Appl Sci. 2020; 10(15):5261. doi: 10.3390/app10155261.
32. Bullock GS, Mylott J, Hughes T, Nicholson KF, Riley RD, Collins GS. Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport. Sports Med. 2022; 52(10):2469–2482. doi: 10.1007/s40279-022-01698-9.
33. Coyne JOC, Gregory Haff G, Coutts AJ, Newton RU, Nimphius S. The current state of subjective training load monitoring—a practical perspective and call to action. Sports Med Open. 2018; 4:1–10. doi: 10.1186/s40798-018- 0172-x.
34. Jaspers A, Brink MS, Probst SG, Frencken WG, Helsen WF. Relationships between training load indicators and training outcomes in professional soccer. J Sports Med Sci. 2017; 47(3):533–544. doi: 10.1007/ s40279-016-0591-0.
35. Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014; 48(8):708–712. doi: 10.1136/ bjsports-2013-092524.
36. Duhig S, Shield AJ, Opar D, Gabbett TJ, Ferguson C, Williams M. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016; 50(24):1536–1540. doi: 10.1136/ bjsports-2015-095679.
37. Dalen-Lorentsen T, Bjørneboe J, Clarsen B, Vagle M, Fagerland MW, Andersen TE. Does load management using the acute: chronic workload ratio prevent health problems? A cluster randomized trial of 482 elite youth footballers of both sexes. Br J Sports Med. 2021; 55(2):108–114. doi: 10.1136/bjsports-2020-103003.
38. Griffin A, Kenny IC, Comyns TM, Lyons M. The association between the acute: chronic workload ratio and injury and its application in team sports: a systematic review. Sports Med. 2020; 50(3):561–580. doi: 10.1007/ s40279-019-01218-2.
39. Evans J. Hypothetical thinking: Dual processes in reasoning and judgment. 2007: Psychology Press. doi: 10.4324/9780367823832.
40. Gabbett TJ, Nassis GP, Oetter E, et al. The athlete monitoring cycle: a practical guide to interpreting and applying training monitoring data. Br J Sports Med. 2017; 51(20):1451–1452. doi: 10.1136/bjsports-2016-097298.
41. Dhahbi W, Materne O, Chamari K. Rethinking knee injury prevention strategies: joint-by-joint training approach paradigm versus traditional focused knee strengthening. Biol Sport. 2025; 42(4):59–65. doi: 10.5114/ biolsport.2025.148544.
42. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013; 43(5):313–338. doi: 10.1007/s40279-013-0029-x.
43. Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer: an update. Sports Med. 2005; 35:501–536. doi: 10.2165/00007256- 200535060-00004.
44. Ekblom B. Applied physiology of soccer. Sports Med. 1986; 3:50–60. doi: 10.2165/00007256- 198603010-00005.
45. Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005; 39(6):324–329. doi: 10.1136/bjsm.2005.018341.
46. Fuller CW, Ekstrand J, Junge A, et al. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. J Sports Sci. 2006; 16(2):83–92. doi: 10.1136/ bjsm.2005.025270.
47. Waldén M, Mountjoy M, McCall A, et al. Football-specific extension of the IOC consensus statement: methods for recording and reporting of epidemiological data on injury and illness in sport 2020. Br J Sports Med. 2023 ; 57(21):1341–1350. doi: 10.1136/bjsports-2022-106405.
48. Ekstrand J, Waldén M, Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016; 50(12):731–737. doi: 10.1136/bjsports-2015-095359.
49. Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level. 2013, BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine. doi: 10.1136/ bjsports-2013-092771.
50. Pulici L, Certa D, Zago M, Volpi P, Esposito F. Injury burden in professional European football (soccer): systematic review, meta-analysis, and economic considerations. Clin J Sport Med. 2023; 33(4):450–457. doi: 10.1097/ JSM.0000000000001107.
51. Eckard TG, Padua DA, Hearn DW, Pexa BS, Frank BS. The relationship between training load and injury in athletes: a systematic review. Sports Med. 2018; 48(8):1929–1961. doi: 10.1007/s40279-018-0951-z.
52. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011; 39(6):1226–1232. doi: 10.1177/0363546510395879.
53. Faude O, Rößler R, Junge A. Football injuries in children and adolescent players: are there clues for prevention? Sports Med. 2013; 43(9):819–837. doi: 10.1007/s40279-013-0061-x.
54. Hägglund M, Waldén M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013; 47(12):738–742. doi: 10.1136/bjsports-2013-092215.
55. López-Valenciano A, Ruiz-Pérez I, Garcia-Gómez A, et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. Br J Sports Med. 2020; 54(12):711–718. doi: 10.1136 /bjsports-2018-099577.
56. Szymski D, Krutsch V, Achenbach L, et al. Epidemiological analysis of injury occurrence and current prevention strategies on international amateur football level during the UEFA Regions Cup 2019. BMC Musculoskelet Disord. 2022; 142(2):271–280. doi: 10.1007/s00402-021-03861-9.
57. Hägglund M, Waldén M, Ekstrand J. Injury incidence and distribution in elite football—a prospective study of the Danish and the Swedish top divisions. Br J Sports Med. 2005; 15(1):21–28. doi: 10.1111/j.1600-0838.2004 .00395.x.
58. Chamari K, Rekik RN, Chaabane M, et al. Evolution of injury burden in Qatari professional football – 8 season data from the Aspetar Injury and Illness Surveillance Programme. Biol Sport. 2025; 42(1):201–209. doi: 10.5114 /biolsport.2025.139089.
59. Waldén M, Hägglund M, Werner J, Ekstrand J. The epidemiology of anterior cruciate ligament injury in football (soccer): a review of the literature from a gender-related perspective. Knee Surg Sports Traumatol Arthrosc. 2011; 19:3–10. doi: 10.1007/s00167-010 -1172-7.
60. Pulici L, Certa D, Zago M, Volpi P, Esposito F. Injury burden in professional European football (soccer): systematic review, meta-analysis, and economic considerations. 2022; p. 10.1097. doi: 10.1097/JSM.000000000 0001107.
61. Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008; 36(8):1469–1475. doi: 10.1177/0363546508316764.
62. Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med. 2010; 38(6):1147–1153. doi: 10.1177/0363 546509358381.
63. Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006; 40(9):767–772. doi: 10.1136/bjsm.2006.026609.
64. Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA Injury Study. Am J Sports Med. 2013; 41(2):327–335. doi: 10.1177/0363546512470634.
65. Askling C, Karlsson J, Thorstensson A. Thorstensson. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003; 13(4):244–250. doi: 10.1034/j.1600-0838.2003 .00312.x.
66. Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006; 40(1):40–44. doi: 10.1136/bjsm .2005.018879.
67. Askling CM, Malliaropoulos N, Karlsson J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br J Sports Med. 2012; 46(2):86–87. doi: 10.1136/bjsports -2011-090534.
68. Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011; 39(11):2296–2303. doi: 10.1177 /0363546511419277.
69. Chebbi S, Chamari K, Van Dyk N, Gabbett T, Tabben M. Hamstring Injury Prevention for Elite Soccer Players: A Real-World Prevention Program Showing the Effect of Players’ Compliance on the Outcome. J Strength Cond Res. 2022; 36(5):1383–1388. doi: 10.1519/JSC.000000 0000003505.
70. Green B, Bourne MN, van Dyk N, Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br J Sports Med. 2020; 54(18):1081–1088. doi: 10.1136 /bjsports-2019-100983.
71. Kenneally-Dabrowski CJB, Brown NAT, Lai AKM, Perriman D, Spratford W, Serpell BG. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports. 2019; 29(8):1083–1091. doi: 10.1111/sms.13437.
72. Garrett WE Jr. Muscle strain injuries. Am J Sports Med. 1996; 24(6_ suppl):S2–S8.
73. Lieber RL, Fridén J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol. 1993; 74(2):520–526. doi: 10.1152 /jappl.1993.74.2.520.
74. Mann R, Sprague P. A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport. 1980; 51(2):334–348. doi: 10.1080 /02701367.1980.10605202.
75. Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech. 2005; 20(10):1072–1078. doi: 10.1016 /j.clinbiomech.2005.07.005.
76. Schache AG, Kim HJ, Morgan DL, Pandy MG. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture. 2010; 32(1):136–140. doi: 10.1016 /j.gaitpost.2010.03.006.
77. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007; 35(2):197–206. doi: 10.1177/0363546506294679.
78. Orchard JW. Hamstrings are most susceptible to injury during the early stance phase of sprinting. 2012, BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; p. 88–89. doi: 10.1136 /bjsports-2011-090127.
79. Sun Y, Wei S, Zhong Y, Fu W, Li L, Liu Y. How joint torques affect hamstring injury risk in sprinting swing–stance transition. Med Sci Sports Exerc. 2015; 47(2):373. doi: 10.1249/MSS .0000000000000404.
80. Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc. 2005; 37(11):1931–1938. doi: 10.1249 /01.mss.0000176674.42929.de.
81. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007; 35(10):1716–1724. doi: 10.1177 /0363546507303563.
82. Jones RI, Ryan B, Todd AI. Muscle fatigue induced by a soccer match-play simulation in amateur Black SouthAfrican players. J Sports Sci. 2015; 33(12):1305–1311. doi: 10.1080 /02640414.2015.1022572.
83. Schwiete C, Roth C, Skutschik C, et al. Effects of muscle fatigue on exercise induced hamstring muscle damage: a three-armed randomized controlled trial. Eur J Appl Physiol. 2023; p. 1–17. doi: 10.1007/s00421 -023-05234-z.
84. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Susceptibility to hamstring injuries in soccer: a prospective study using muscle functional magnetic resonance imaging. Am J Sports Med. 2016; 44(5):1276–1285. doi: 10.1177 /0363546515626538.
85. Bramah C, Mendiguchia J, Dos’Santos T, Morin JB. Exploring the role of sprint biomechanics in hamstring strain injuries: a current opinion on existing concepts and evidence. Sports Med. 2023; p. 1–11. doi: 10.1007 /s40279-023-01925-x.
86. Aiello F, Di Claudio C, Fanchini M, et al. Do non-contact injuries occur during high-speed running in elite football? Preliminary results from a novel GPS and video-based method. J Sci Med Sport. 2023; 26(9):465–470. doi: 10.1016/j.jsams.2023.07.007.
87. Teixeira JE, Forte P, Ferraz R, et al. Monitoring accumulated training and match load in football: A systematic review. Int J Environ Res Public Health. 2021; 18(8):3906. doi: 10.3390 /ijerph18083906.
88. Danielsson A, Horvath A, Senorski C, et al. The mechanism of hamstring injuries–a systematic review. BMC Musculoskelet Disord. 2020; 21:1–21. doi: 10.1186/s12891-020-03658-8.
89. Gualtieri A, Rampinini E, Dello Iacono A, Beato M. High-speed running and sprinting in professional adult soccer: current thresholds definition, match demands and training strategies. A systematic review. Front Sports Active Living. 2023; 5:1116293. doi: 10.3389/fspor.2023.1116293.
90. Clemente FM, Rabbani A, Conte D, et al. Training/match external load ratios in professional soccer players: A full-season study. Int J Environ Res Public Health. 2019; 16(17):3057. doi: 10.3390/ijerph16173057.
91. Baptista I, Johansen D, Seabra A, Pettersen SA. Position specific player load during match-play in a professional football club. PLoS One. 2018; 13(5):e0198115. doi: 10.1371 /journal.pone.0198115.
92. Pillitteri G, Clemente FM, Sarmento H, et al. Translating player monitoring into training prescriptions: Real world soccer scenario and practical proposals. Int J Sports Sci Coaching. 2024; p. 17479541241289080. doi: 10.1177/17479541241289080.
93. Buchheit M, Douchet T, Settembre M, et al. The 11 Evidence-Informed and Inferred Principles of Microcycle Periodization in Elite Football. Sport Perform Sci Rep. 2024; 218.
94. Buchheit M, Sandua M, Berndsen J, et al. Loading patterns and programming practices in elite football: insights from 100 elite practitioners. 2021; 153:v1.
95. Buchheit M, Settembre M, Hader K, McHugh D. Planning the microcycle in elite football: to rest or not to rest? Injuries and days off-feet in elite football. doi: 10.1123/ijspp.2022-0146.
96. Beato M, Drust B, Iacono AD. Implementing high-speed running and sprinting training in professional soccer. Int J Sports Med. 2021; 42(04):295–299. doi: 10.1055 /a-1302-7968.
97. Liu Y, Sun Y, Zhu W, Yu J. The late swing and early stance of sprinting are most hazardous for hamstring injuries. J Sport Health Sci. 2017; 6(2):133. doi: 10.1016/j.jshs.2017.01.011.
98. Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part I: A critical review of the literature. J Sports Sci. 2017; 35(23):2313–2321. doi: 10.1080 /02640414.2016.1266018.
99. Van Hooren B, Bosch F. Bosch. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise. J Sports Sci. 2017; 35(23):2322–2333. doi: 10 .1080/02640414.2016.1266018.
100. Biewener A. Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Am Zoologist. 1998; 38(4):703–717. doi: 10.1093/icb/38.4.703.
101. McBride JM. Muscle actuators, not springs, drive maximal effort human locomotor performance. J Sports Sci Med. 2021; 20(4):766. doi: 10.52082/jssm.2021.766.
102. Holt NC, Roberts TJ, Askew GN. The energetic benefits of tendon springs in running: is the reduction of muscle work important? J Exp Biol. 2014; 217(24):4365–4371. doi: 10.1242/jeb.112813.
103. Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. Physiology. 2001; 16(6):256–261. doi: 10.1152 /physiologyonline.2001.16.6.256.
104. Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007; 40(16):3555–3562. doi: 10.1016/j. jbiomech.2007.05.026.
105. Van Hooren B, Bosch F. Influence of muscle slack on high-intensity sport performance: A review. Strength Cond J. 2016; 38(5):75–87. doi: 10.1519/ SSC.0000000000000251.
106. Jönhagen S, Ericson MO, Németh G, Eriksson E. Amplitude and timing of electromyographic activity during sprinting. Scand J Med Sci Sports. 1996; 6(1):15–21. doi: 10.1111/j.1600-0838 .1996.tb00064.x.
107. van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019; 53(21):1362–1370. doi: 10.1136/bjsports-2018-100045.
108. Rice N, Bemis CM, Daley MA, Nishikawa K. Understanding Muscle Function during in vivo Locomotion Using a Novel Muscle Avatar Approach. 2020, Northern Arizona University. doi: 10.1242/jeb.244721.
109. Brenner B, Eisenberg E. Muscle mechanics and biochemical kinetics. Molecular mechanisms in muscular contraction. 1990:77–149. doi: 10.1007/978-3-662-11289-2_1.
110. Prince C, Morin JB, Mendiguchia J, et al. Sprint specificity of isolated hamstring-strengthening exercises in terms of muscle activity and force production. Front Sports Active Living. 2021; 2:609636. doi: 10.3389/ fspor.2020.609636.
111. Lolli L, Bahr R, Weston M, et al. No association between perceived exertion and session duration with hamstring injury occurrence in professional football. Scand J Med Sci Sports. 2020; 30(3):523–530. doi: 10.1111/ sms.13591.
112. Whiteley R, Gregson W, Bahr R, et al. High-speed running during match-play before and after return from hamstring injury in professional footballers. Scand J Med Sci Sports. 2022; 32(10):1502–1509. doi: 10.1111/sms.14219.
113. Smith SC Jr. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med. 2007; 120(3):S3–S11. doi: 10.1016 /j.amjmed.2007.01.002.
114. Evans J. Bias in human reasoning: Causes and consequences. 1989: Psychology Press.
115. Tabben M, Verhagen E, Warsen M, et al. Obstacles and opportunities for injury prevention in professional football in Qatar: exploring the implementation reality. BMJ Open Sport Exerc Med. 2023; 9(1):e001370. doi: 10.1136/ bmjsem-2022-001370.
116. Tversky A, Kahneman D. Kahneman. Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science. 1974; 185(4157):1124–1131. doi: 10 .1126/science.185.4157.1124.
117. Pohl R. Cognitive illusions: A handbook on fallacies and biases in thinking, judgment and memory. 2004: Psychology Press.
118. Legrenzi P, Girotto V, Johnson-Laird PN. Johnson-Laird. Focusing in reasoning and decision making. Cognition. 1993; 49(1–2):37–66. doi: 10.1016/0010 -0277(93)90035-t.
119. Weston M. Training load monitoring in elite English soccer: a comparison of practices and perceptions between coaches and practitioners. Sci Med Football. 2018; 2(3):216–224. doi: 10.1080/24733938.2018 .1427883.
120. Stanovich K. Who is rational?: Studies of individual differences in reasoning. 1999: Psychology Press.
121. Ehrlinger J, Readinger W, Kim B. Decision-making and cognitive biases. Encyclopedia of Mental Health. 2016; 12(3):83–7. doi: 10.1016/B978-0 -12-397045-9.00206-8.
122. Edwards WB. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exerc Sport Sci Rev. 2018; 46(4):224–231. doi: 10.1249 /JES.0000000000000163.
123. Kalkhoven JT, Watsford ML, Impellizzeri FM. A conceptual model and detailed framework for stress-related, strain-related, and overuse athletic injury. J Sci Med Sport. 2020; 23(8):726–734. doi: 10.1016/j.jsams .2020.02.002.
124. Gallagher S, Heberger JR. Examining the interaction of force and repetition on musculoskeletal disorder risk: a systematic literature review. Hum Factors. 2013; 55(1):108–124. doi: 10.1177/0018720812449648.
125. Fung YC. Biomechanics: mechanical properties of living tissues. 2013: Springer Science & Business Media.
126. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017; 17(3):114.
127. Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014; 44 Suppl 2(Suppl 2):S139–47. doi: 10.1007 /s40279-014-0253-z.
128. Philippe P, Mansi O. Nonlinearity in the epidemiology of complex health and disease processes. Theor Med Bioethics. 1998; 19:591–607. doi: 10.1023/a:1009979306346.
129. Hulme A, Finch CF. Finch. From monocausality to systems thinking: a complementary and alternative conceptual approach for better understanding the development and prevention of sports injury. Injury Epidemiol. 2015; 2(1):1–12. doi: 10.1186/s40621-015-0064-1.
130. Mandorino M, Figueiredo A, Cima G, Tessitore. A data mining approach to predict non-contact injuries in young soccer players. Int J Comput Sci Sport. 2021; 20(2):147–163. 10.2478 /ijcss-2021-0009.
131. Rossi A, Pappalardo L, Cintia P, Iaia FM, Fernàndez J, Medina D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS One. 2018; 13(7):e0201264. doi: 10.1371 /journal.pone.0201264.
132. Vallance E, Sutton-Charani N, Imoussaten A, Montmain J, Perrey S. Combining internal-and external training-loads to predict non-contact injuries in soccer. Appl Sci. 2020; 10(15):5261. doi: 10.3390 /app10155261.
133. Bahr R. Why screening tests to predict injury do not work—and probably never will…: a critical review. Br J Sports Med. 2016; 50(13):776–80. doi: 10.1136/bjsports-2016-096256.
134. Gabbett TJ, Whyte DG, Hartwig TB, Wescombe H, Naughton GA. The relationship between workloads, physical performance, injury and illness in adolescent male football players. J Sci Med Sport. 2014; 44(7):989–1003. doi: 10.1007 /s40279-014-0179-5.
135. Smith DJ. A framework for understanding the training process leading to elite performance. J Sci Med Sport. 2003; 33(15):1103–1126. doi: 10.2165/00007256 -200333150-00003.
136. Halson SL, Jeukendrup AE. Does overtraining exist? J Sports Med. 2004; 34(14):967–981. doi: 10.2165 /00007256-200434140-00003.
137. Issurin VB. Benefits and limitations of block periodized training approaches to athletes’ preparation: A review. Sports Med. 2016; 46(3):329–38. doi: 10.1007/s40279-015-0425-5.
138. Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. J Sports Med. 2009; 39(9):779–795. doi: 10.2165 /11317780-000000000-00000.
139. Drew MK, Finch CF. The relationship between training load and injury, illness and soreness: a systematic and literature review. J Sports Med. 2016; 46(6):861–883. doi: 10.1007 /s40279-015-0459-8.
140. Montini M, Rocchi JE. Monitoring Training Load in Soccer: The ROMEI J Strength Cond Res. 2022; 36(9):2566–2572. doi: 10.1519 /JSC.0000000000003875.
141. Verstappen S, van Rijn RM, Cost R, Stubbe JH. The association between training load and injury risk in elite youth soccer players: a systematic review and best evidence synthesis. Sports Med Open. 2021; 7(1):6. doi: 10.1186/s40798-020-00296-1.
142. Chamari K, Bahr R. Training for elite sport performance: Injury risk management also matters! Int J Sports Physiol Perform. 2016; 11(5):561–2. doi: 10.1123/IJSPP.2016-0207.
143. Bothwell LE, Greene JA, Podolsky SH, Jones DS. Assessing the gold standard—lessons from the history of RCTs. N Engl J Med. 2016; 374(22):2175–2181. doi: 10.1056 /NEJMms1604593.
144. Jeffries AC, Marcora SM, Coutts AJ, Wallace L, McCall A, Impellizzeri FM. Development of a revised conceptual framework of physical training for use in research and practice. Sports Med. 2021:1–16. doi: 10.1007/s40279 -021-01551-5.
145. Pfirrmann D, Herbst M, Ingelfinger P, Simon P, Tug S. Analysis of injury incidences in male professional adult and elite youth soccer players: a systematic review. J Sci Med Sport. 2016; 51(5):410–424. doi: 10.4085/1062-6050-51.6.03.
146. Impellizzeri FM, Tenan MS, Kempton T, Novak A, Coutts AJ. Acute: chronic workload ratio: conceptual issues and fundamental pitfalls. Int J Sports Physiol Perform. 2020; 15(6):907–913. doi: 10.1123 /ijspp.2019-0864.
147. Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute: chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016; 50(4):231–236. doi: 10.1136 /bjsports-2015-094817.
148. Malone S, Owen A, Mendes B, Hughes B, Collins K, Gabbett TJ. High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? J Sci Med Sport. 2018; 21(3):257–262. doi: 10.1016 /j.jsams.2017.05.016.
149. Malone S, Roe M, Doran DA, Gabbett TJ, Collins KD. Protection against spikes in workload with aerobic fitness and playing experience: the role of the acute: chronic workload ratio oninjury risk in elite Gaelic football. Int J Sports Physiol Perform. 2017; 12(3):393–401. doi: 10.1123 /ijspp.2016-0090.
150. Windt J, Zumbo BD, Sporer B, MacDonald K, Gabbett TJ. Why do workload spikes cause injuries, and which athletes are at higher risk? Mediators and moderators in workload–injury investigations. 2017, BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; p. 993–994. doi: 10.1136 /bjsports-2016-097255.
151. Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload–injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019; 22(1):29–34. doi: 10.1016/j.jsams.2018.01.010.
152. Hulin BT, Gabbett TJ. Indeed association does not equal prediction: the never-ending search for the perfect acute: chronic workload ratio. Br J Sports Med. 2019; 51(1):144–145. doi: 10.1136/bjsports-2018-099448.
153. Lathlean TJH, Newstead SV, Gastin PB. Elite Junior Australian Football Players With Impaired Wellness Are at Increased Injury Risk at High Loads. Sports Health. 2023; 15(2):218–226. doi: 10.1177/19417381221087245.
154. Rabbani A, et al. Match Fatigue Time-Course Assessment Over Four Days: Usefulness of the Hooper Index and Heart Rate Variability in Professional Soccer Players. Front Physiol. 2019; 10:109.
155. Ullah S, Gabbett TJ, Finch CF. Statistical modelling for recurrent events: an application to sports injuries. Br J Sports Med. 2014; 48(17):1287–1293. doi: 10.1136 /bjsports-2011-090803.
156. Silva JR, Rumpf MC, Hertzog M, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018; 48:539–583. doi: 10.1007 /s40279-017-0798-8.
157. Manuel Clemente F, Pillitteri G, Palucci Vieira LH, Rabbani A, Zmijewski P, Beato M. Balancing the load: A narrative review with methodological implications of compensatory training strategies for non-starting soccer players. Biol Sport. 2024; 41(4):173–185. doi: 10.5114 /biolsport.2024.139071.
158. Riboli A, et al. Area per player in small-sided games to replicate the external load and estimated physiological match demands in elite soccer players. PLOS One. 2020; 15(9):e0229194.
159. Riboli A, Coratella G, Rampichini S, Cé E, Esposito F. The distribution of match activities relative to the maximal intensities in elite soccer players: implications for practice. Res Sports Med. 2022; 30(5):463–474. doi: 10.1371/journal.pone.0229194.
160. Riboli A, Semeria M, Coratella G, Esposito F. Effect of formation, ball in play and ball possession on peak demands in elite soccer. Biol Sport. 2021; 38(2):195–205. doi: 10.5114 /biolsport.2020.98450.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.