eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank

vol. 43
Review paper

Can components of the plasminogen activation system predict the outcome of kidney transplants?

Jerzy Jankun, Omar A. Khan, Hesham I. Mostafa, Puneet Sindhwani, Ewa Skrzypczak-Jankun

(Centr Eur Immunol 2018; 43 (2): 222-230)
Online publish date: 2018/06/30
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
Proteolytic and antiproteolytic enzymes play a critical role in the physiology and pathology of different stages of human life. One of the important members of the proteolytic family is the plasminogen activation system (PAS), which includes several elements crucial for this review: the 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) that inhibits tissue-type (tPA) and urokinase-type plasminogen activator (uPA). These two convert plasminogen into its active form named plasmin that can lyse a broad spectrum of proteins. Urokinase receptor (uPAR) is the binding site of uPA. This glycoprotein on the cell surface facilitates urokinase activation of plasminogen, creating high proteolytic activity close to the cell surface. PAS activities have been reported to predict the outcome of kidney transplants. However, reports on expression of PAS in kidney transplants seem to be controversial. On the one hand there are reports that impaired proteolytic activity leads to induction of chronic allograft nephropathy, while on the other hand treatment with uPA and tPA can restore function of acute renal transplants. In this comprehensive review we describe the complexity of the PAS as well as biological effects of the PAS on renal allografts, and provide a possible explanation of the reported controversy.

kidney transplantation, plasminogen, urokinase, tPA

Heidland A, Ling H, Vamvakas S, et al. (1996): Impaired proteolytic activity as a potential cause of progressive renal disease. Miner Electrolyte Metab 22: 157-161.
Skrzydlewska E, Sulkowska M, Koda M, et al. (2005): Proteolytic-antiproteolytic balance and its regulation in carcinogenesis. World J Gastroenterol 11: 1251-1266.
Turner AJ, Nalivaeva NN (2007): New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. Int Rev Neurobiol 82: 113-135.
Vaughan DE (2002): Angiotensin and vascular fibrinolytic balance. Am J Hypertens 15: 3S-8S.
Draxler DF, Medcalf RL (2015): The fibrinolytic system-more than fibrinolysis? Transfus Med Rev 29: 102-109.
Chorostowska-Wynimko J, Skrzypczak-Jankun E, Jankun J (2004): Plasminogen activator inhibitor type-1: its structure, biological activity and role in tumorigenesis (Review). Int J Mol Med 13: 759-766.
Jankun J, Skrzypczak-Jankun E (2009): Yin and yang of the plasminogen activator inhibitor. Pol Arch Med Wewn 119: 410-417.
Blasi F, Sidenius N (2010): The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 584: 1923-1930.
Qiu D, Owen K, Gray K, et al. (2007): Roles and regulation of membrane-associated serine proteases. Biochem Soc Trans 35: 583-587.
Del Rosso M, Margheri F, Serrati S, et al. (2011): The urokinase receptor system, a key regulator at the intersection between inflammation, immunity, and coagulation. Curr Pharm Des 17: 1924-1943.
Mustjoki S, Sidenius N, Sier CF, et al. (2000): Soluble urokinase receptor levels correlate with number of circulating tumor cells in acute myeloid leukemia and decrease rapidly during chemotherapy. Cancer Res 60: 7126-7132.
Aso Y (2007): Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front Biosci 12: 2957-2966.
Vaughan DE (2005): PAI-1 and atherothrombosis. J Thromb Haemost 3: 1879-1883.
Binder BR, Mihaly J (2008): The plasminogen activator inhibitor “paradox” in cancer. Immunol Lett 118: 116-124.
Diebold I, Kraicun D, Bonello S, et al. (2008): The ‘PAI-1 paradox’ in vascular remodeling. Thromb Haemost 100: 984-991.
Kobalka AJ, Keck RW, Jankun J (2015): Synergistic anticancer activity of biologicals from green and black tea on DU 145 human prostate cancer cells. Cent Eur J Immunol 40: 1-4.
Tsantes AE, Nikolopoulos GK, Bagos PG, et al. (2008): The effect of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb Res 122: 736-742.
Burzotta F, Di Castelnuovo A, Amore C, et al. (1998): [The role of 4G/5G polymorphism in the regulation of plasma levels of PAI-1: a model of interaction between genetic and environmental factors]. Cardiologia 43: 83-88.
Opatrny K Jr., Zemanova P, Opatrna S, et al. (2002): Fibrinolysis in chronic renal failure, dialysis and renal transplantation. Ann Transplant 7: 34-43.
Wu CZ, Chang LC, Lin YF, et al. (2015): Urokinase plasminogen activator receptor and its soluble form in common biopsy-proven kidney diseases and in staging of diabetic nephropathy. Clin Biochem 48: 1324-1329.
Rouviere O, Berger P, Beziat C, et al. (2002): Acute thrombosis of renal transplant artery: graft salvage by means of intra-arterial fibrinolysis. Transplantation 73: 403-409.
Killewich LA, Pais SO, Sandager G, et al. (1995): Salvage of renal allograft function and lower extremity venous patency with thrombolytic therapy: case report and review of the literature. J Vasc Surg 21: 691-696.
Roelofs JJ, Rowshani AT, van den Berg JG, et al. (2003): Expression of urokinase plasminogen activator and its receptor during acute renal allograft rejection. Kidney Int 64: 1845-1853.
Perkowska A, Elhasade A, Durlik M, et al. (2002): The effect of chronic allograft rejection on plasma regulators of fibrinolysis. Ann Transplant 7: 44-51.
Yamaguchi Y, Suzuki T, Arita S, et al. (2005): Possible involvement of urokinase-type plasminogen activator release from human peripheral blood lymphocytes in the pathophysiology of chronic allograft nephropathy. Transplant Proc 37: 4276-4281.
Huang M, Mazar AP, Parry G, et al. (2005): Crystallization of soluble urokinase receptor (suPAR) in complex with urokinase amino-terminal fragment (1-143). Acta Crystallogr D Biol Crystallogr 61: 697-700.
Hoyer-Hansen G, Pessara U, Holm A, et al. (2001): Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor. Biochem J 358: 673-679.
Ploug M, Ronne E, Behrendt N, et al. (1991): Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem 266: 1926-1933.
Harita Y, Ishizuka K, Tanego A, et al. (2014): Decreased glomerular filtration as the primary factor of elevated circulating suPAR levels in focal segmental glomerulosclerosis. Pediatr Nephrol 29: 1553-1560.
Mujtaba MA, Sharfuddin AA, Book BL, et al. (2015): Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence. Clin Transplant 29: 606-611.
Franco Palacios CR, Lieske JC, Wadei HM, et al. (2013): Urine but not serum soluble urokinase receptor (suPAR) may identify cases of recurrent FSGS in kidney transplant candidates. Transplantation 96: 394-399.
Bock ME, Price HE, Gallon L, et al. (2013): Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol 8: 1304-1311.
Tang WH, Friess H, di Mola FF, et al. (1998): Activation of the serine proteinase system in chronic kidney rejection. Transplantation 65: 1628-1634.
Rerolle JP, Munteanu E, Drouet M, et al. (2008): PAI-1 donor polymorphism influences long-term kidney graft survival. Nephrol Dial Transplant 23: 3325-3332.
Revelo MP, Federspiel C, Helderman H, et al. (2005): Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma. Nephrol Dial Transplant 20: 2812-2819.
Krajewska M, Koscielska-Kasprzak K, Weyde W, et al. (2009): Impact of donor-dependent genetic factors on long-term renal graft function. Transplant Proc 41: 2978-2980.
Azarpira N, Bagheri M, Raisjalali GA, et al. (2009): Angiotensinogen, angiotensine converting enzyme and plasminogen activator inhibitor-1 gene polymorphism in chronic allograft dysfunction. Mol Biol Rep 36: 909-915.
Chow KM, Szeto CC, Szeto CY, et al. (2002): Plasminogen activator inhibitor-1 polymorphism is associated with progressive renal dysfunction after acute rejection in renal transplant recipients. Transplantation 74: 1791-1794.
Delarue F, Hertig A, Alberti C, et al. (2001): Prognostic value of plasminogen activator inhibitor type 1 mRNA in microdissected glomeruli from transplanted kidneys. Transplantation 72: 1256-1261.
Gueler F, Rong S, Mengel M, et al. (2008): Renal urokinase-type plasminogen activator (uPA) receptor but not uPA deficiency strongly attenuates ischemia reperfusion injury and acute kidney allograft rejection. J Immunol 181: 1179-1189.
Malyszko J, Malyszko JS, Pawlak K, et al. (1996): The coagulo-lytic system and endothelial function in cyclosporine-treated kidney allograft recipients. Transplantation 62: 828-830.
Blasi F, Carmeliet P (2002): uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3: 932-943.
Maas RJ, Deegens JK, Wetzels JF (2013): Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol 28: 1041-1048.
Abbott GL, Blouse GE, Perron MJ, et al. (2004): 19F NMR studies of plasminogen activator inhibitor-1. Biochemistry 43: 1507-1519.
Cesarman-Maus G, Hajjar KA (2005): Molecular mechanisms of fibrinolysis. Br J Haematol 129: 307-321.
Katz BA, Sprengeler PA, Luong C, et al. (2001): Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem Biol 8: 1107-1121.
Zeslawska E, Schweinitz A, Karcher A, et al. (2000): Crystals of the urokinase type plasminogen activator variant beta(c)-uPAin complex with small molecule inhibitors open the way towards structure-based drug design. J Mol Biol 301: 465-475.
Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, et al. (2003): A novel form of the plasminogen activator inhibitor created by cysteine mutations extends its half-life: relevance to cancer and angiogenesis. Mol Cancer Ther 2: 19-28.
Wang F, Eric Knabe W, Li L, et al. (2012): Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorg Med Chem 20: 4760-4773.
Muehlenweg B, Assfalg-Machleidt I, Parrado SG, et al. (2000): A novel type of bifunctional inhibitor directed against proteolytic activity and receptor/ligand interaction. Cystatin with a urokinase receptor binding site. J Biol Chem 275: 33562-33566.
Wyganowska-Swiatkowska M, Urbaniak P, Szkaradkiewicz A, et al. (2016): Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro. Cent Eur J Immunol 41: 125-131.
Wyganowska-Swiatkowska M, Jankun J (2015): Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol 47: 16-24.
Gorlatova NV, Cale JM, Elokdah H, et al. (2007): Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. J Biol Chem 282: 9288-9296.
Jankun J, Al-Senaidy A, Skrzypczak-Jankun E (2012): Can inactivators of plasminogen activator inhibitor alleviate the burden of obesity and diabetes? (Review). Int J Mol Med 29: 3-11.
Naessens D, Gils A, Compernolle G, et al. (2003): Elucidation of a novel epitope of a substrate-inducing monoclonal antibody against the serpin PAI-1. J Thromb Haemost 1: 1028-1033.
Verhamme I, Kvassman JO, Day D, et al. (1999): Accelerated conversion of human plasminogen activator inhibitor-1 to its latent form by antibody binding. J Biol Chem 274: 17511-17517.
Egelund R, Einholm AP, Pedersen KE, et al. (2001): A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands. Ligand-induced serpin polymerization. J Biol Chem 276: 13077-13086.
Crandall DL, Elokdah H, Di L, et al. (2004): Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. J Thromb Haemost 2: 1422-1428.
Gardell SJ, Krueger JA, Antrilli TA, et al. (2007): Neutralization of plasminogen activator inhibitor I (PAI-1) by the synthetic antagonist PAI-749 via a dual mechanism of action. Mol Pharmacol 72: 897-906.
Jankun J, Skotnicka M, Lysiak-Szydlowska W, et al. (2011): Diverse inhibition of plasminogen activator inhibitor type 1 by theaflavins of black tea. Int J Mol Med 27: 525-529.
Kohler M, Sen S, Miyashita C, et al. (1991): Half-life of single-chain urokinase-type plasminogen activator (scu-PA) and two-chain urokinase-type plasminogen activator (tcu-PA) in patients with acute myocardial infarction. Thromb Res 62: 75-81.
Pepperell D, Morel-Kopp MC, Ward C (2014): Clinical Application of Fibrinolytic Assays. In: Fibrinolysis and Thrombolysis, Kolev K (ed.). IntechOpen, Rijeka.
Roychoudhury PK, Khaparde SS, Mattiasson B, et al. (2006): Synthesis, regulation and production of urokinase using mammalian cell culture: a comprehensive review. Biotechnol Adv 24: 514-528.
Wiman B (2000): The fibrinolytic enzyme system. Basic principles and links to venous and arterial thrombosis. Hematol Oncol Clin North Am 14: 325-338, vii.
Wiman B, Hamsten A (1990): The fibrinolytic enzyme system and its role in the etiology of thromboembolic disease. Semin Thromb Hemost 16: 207-216.
Barinka C, Parry G, Callahan J, et al. (2006): Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 363: 482-495.
Jankun J, Yang J, Zheng H, et al. (2012): Remarkable extension of PAI-1 half-life surprisingly brings no changes to its structure. Int J Mol Med 29: 61-64.
Zhou A, Huntington JA, Pannu NS, et al. (2003): How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 10: 541-544.
Stein PE, Baek K (2002): 1.8A Resolution Structure of Latent Plasminogen Activator Inhibitor-1 (PAI-1), doi: 10.2210/pdb1LJ5/pdb
Gong L, Liu M, Zeng T, et al. (2015): Crystal Structure of the Michaelis Complex between Tissue-type Plasminogen Activator and Plasminogen Activators Inhibitor-1. J Biol Chem 290: 25795-25804.
Aertgeerts K, De Bondt HL, De Ranter C, et al. (1995): Crystallization and X-ray diffraction data of the cleaved form of plasminogen activator inhibitor-1. Proteins 23: 118-121.
Aertgeerts K, De Bondt HL, De Ranter CJ, et al. (1995): Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol 2: 891-897.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe