Biol Sport. 2025;42(4):13–28
1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015; 3(31):1–3. doi: 10.1186/s40168-015-0094-5.
2.
Castro AP, Silva KKS, Medeiros CSA, et al. Effects of 12 weeks of resistance training on rat gut microbiota composition. Journal of Experimental Biology. 2021; 224(12):1–6. doi: 10.1242/jeb.242543.
3.
Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486:207–214. doi: 10.1038 /nature11234.
4.
Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut microbiota and intestinal trans-epithelial permeability. Int J Mol Sci. 2020; 21:1–14. doi: 10.3390 /ijms21176402.
5.
Bonomini-Gnutzmann R, Plaza-Díaz J, Jorquera-Aguilera C, et al. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int J Environ Res Public Health. 2022; 19:9518. doi: 10.3390 /ijerph19159518.
6.
Matson V, Chervin CS, Gajewski TF. Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology. 2021; 160(2):600–613. doi: 10.1053/j.gastro .2020.11.041.
7.
Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013; 69(1):42–51. doi: 10.1016/J.PHRS .2012.10.007.
8.
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016; 352(6285):539–544. doi: 10.1126/SCIENCE.AAD9378.
9.
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology 2015 14:1. 2015; 14(1):20–32. doi: 10.1038/nrmicro3552.
10.
Wang G, Zhou H, Zhang L, et al. Effects of high-intensity interval training on gut microbiota profiles in 12 months’ old ICR mice. J Physiol Biochem. 2020; 76(4):539–548. doi: 10.1007/s13105 -020-00758-w.
11.
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. International Journal of Molecular Sciences. 2022; 23:2623:2679. doi: 10.3390/ IJMS23052679.
12.
Tansathitaya V, Sarasin W, Phakham T, et al. Different Exercise Intensity Associates with Varied Disease Biomarkers of Guts-Microbiome Genera Change in Rats: Preliminary Study. J Pure Appl Microbiol. 2022; 16(2):1130–1137. doi: 10.22207/JPAM.16.2.39.
13.
Mohr AE, Jäger R, Carpenter KC, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020; 17(24):1–33. doi: 10.1186/s12970-020-00353-w.
14.
Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63:1913–1920. doi: 10.1136 /gutjnl-2013-306541.
15.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:1–9. doi: 10.1136/BMJ.N71.
16.
Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016; 5(210):1–10. doi: 10.1186/s13643 -016-0384-4.
17.
Hooijmans CR, Rovers MM, De Vries RBM, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14(43):1–9. doi: 10.1186/1471-2288-14-43.
18.
Allen JM, Miller MEB, Pence BD, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J Mice. J Appl Physiol. 2015; 118:1059–1066. doi: 10.1152 /japplphysiol.01077.2014.
19.
Batacan RB, Fenning AS, Dalbo VJ, et al. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. J Appl Microbiol. 2017; 122(6):1627–1638. doi: 10.1111/jam.13442.
20.
Campbell SC, Wisniewski PJ, Noji M, et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One. 2016; 11(3):1–17. doi: 10.1371/journal.pone.0150502.
21.
Lambert JE, Myslicki JP, Bomhof MR, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition and Metabolism. 2015; 40(7):749–752. doi: 10.1139/apnm-2014-0452.
22.
Meliala A, Narwidina P, Nirwati H, et al. The impact of moderate- and high intensity exercise on microbiota population and short-chain fatty acid production in the cecum of rats. J Appl Pharm Sci. 2021; 11(8):90–97. doi: 10.7324/JAPS.2021.110813.
23.
Mika A, Van Treuren W, González A, et al. Exercise Is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PLoS One. 2015; 10(5):1–20. doi: 10.1371 /journal.pone.0125889.
24.
Queipo-Ortuño MI, Seoane LM, Murri M, et al. Gut Microbiota Composition in Male Rat Models under Different Nutritional Status and Physical Activity and Its Association with Serum Leptin and Ghrelin Levels. PLoS One. 2013; 8(5). doi: 10.1371/journal.pone.0065465.
25.
Soares NL, Dorand VAM, Cavalcante HC, et al. Does intermittent fasting associated with aerobic training influence parameters related to the gut-brain axis of Wistar rats? J Affect Disord. 2021; 293:176–185. doi: 10.1016/j.jad.2021 .06.028.
26.
Wan C, Liu Z Bin, Tan H, et al. Effect of voluntary wheel running on gut microbiota composition in developing mice. Nutr Hosp. 2022; 39(4):896–904. doi: 10.20960/nh.03944.
27.
Yang W, Liu Y, Yang G, et al. Moderate-Intensity Physical Exercise Affects the Exercise Performance and Gut Microbiota of Mice. Front Cell Infect Microbiol. 2021; 11:1–16. doi: 10.3389/fcimb.2021.712381.
28.
Yuan X, Xu S, Huang H, et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity inan overtraining mice model. Scand J Med Sci Sports. 2018; 28:1541–1551. doi: 10.1111/sms.13060.
29.
Yun EJ, Imdad S, Jang J, et al. Diet Is a Stronger Covariate Than Exercise in Determining Gut Microbial Richness and Diversity. Nutrients. 2022; 14:2507. doi: 10.3390/nu14122507.
30.
Anhê FF, Zlitni S, Barra NG, et al. Life-long exercise training and inherited aerobic endurance capacity produce converging gut microbiome signatures in rodents. Physiol Rep. 2022; 10:1–10. doi: 10.14814/phy2.15215.
31.
Lamoureux E V., Grandy SA, Langille MGI. Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome. mSystems. 2017; 2(4):1–14. doi: 10.1128/msystems .00006-17.
32.
Chen See JR, Amos D, Wright J, et al. Synergistic effects of exercise and catalase overexpression on gut microbiome. Environ Microbiol. 2022; 24(9):4220–4235. doi: 10.1111/1462 -2920.15670.
33.
Mohr AE, Jäger R, Carpenter KC, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020; 17(24):1–33. doi: 10.1186/s12970-020-00353-w.
34.
Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Front Microbiol. 2016; 7(455):1–12. doi: 10.3389/fmicb .2016.00455.
35.
Lach G, Morais LH, Costa APR, et al. Envolvimento da Flora Intestinal na Modulação de Doenças Psiquiátricas. VITTALLE – Revista de Ciências da Saúde. 2017; 29(1):64–82. doi: 10.14295/vittalle.v29i1.6413.
36.
Gomes APP. A microbiota intestinal e os desenvolvimentos recentes sobre o seu impacto na saúde e na doença. Universidade de Lisboa; 2017.
37.
Rodrigues L dos SV. Relação entre microbiota intestinal e obesidade: terapêutica nutricional através do uso de probióticos. Centro Universitário de Brasília. CENTRO UNIVERSITÁRIO DE BRASÍLIA; 2016.
38.
Ortiz-Alvarez L, Xu H, Ruiz-Campos S, et al. Higher physical activity levels are related to faecal microbiota diversity and composition in young adults. Biology of Sport. 2025; 42(1):123–135. doi: 10.5114/biolsport.2025.139850.
39.
Petri C, Mascherini G, Izzicupo P, et al. Gut microbiota and physical activity level: characterization from sedentary to soccer players. Biology of Sport. 2024; 41(3):169–176. doi: 10.5114/biolsport .2024.134759.
40.
Ruiz-Limón P, Muralidharan J, Gomez-Perez A, et al. Physical activity shifts gut microbiota structure in aged subjects with overweight/obesity and metabolic syndrome. Biology of Sport. 2024; 41(3):47–60. doi: 10.5114 /biolsport.2024.133005.
41.
Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63:1913–1920. doi: 10.1136 /gutjnl-2013-306541.
42.
Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/ bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020; 8:1715. doi: 10.3390/microorganisms8111715.
43.
Berry D. The emerging view of Firmicutes as key fibre degraders in the human gut. Environ Microbiol. 2016; 18(7):2081–2083. doi: 10.1111/1462 -2920.13225.
44.
Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice. 2012; 27:201–214. doi: 10.1177/0884533611436116.
45.
Berry D, Reinisch W. Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases? Best Pract Res Clin Gastroenterol. 2013; 27(1):47–58. doi: 10.1016/j.bpg .2013.03.005.
46.
Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008; 72:572–576. doi: 10.1271 /bbb.70474.
47.
Guilloteau P, Martin L, Eeckhaut V, et al. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr Res Rev. 2010; 23(2):366–384. doi: 10.1017/S0954422410000247.
48.
Lee H, Ko G. Effect of Metformin on Metabolic Improvement and Gut Microbiota. Appl Environ Microbiol. 2014; 80(19):5935–5943. doi: 10.1128/AEM.01357-14.
49.
Wirostko E, Johnson L, Wirostko B. Ulcerative colitis associated chronic uveitis. Parasitization of intraocular leucocytes by mollicute-like organisms. J Submicrosc Cytol Pathol. 1990; 22(2):231–239.
50.
Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2011; 17(4):917–926. doi: 10.1002 /ibd.21462.
51.
Baothman OA, Zamzami MA, Taher I, et al. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016; 15(108):1–8. doi: 10.1186/s12944-016-0278-4.
52.
Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011; 60:631–637. doi: 10.1136/gut.2010 .223263.
53.
Lin H V., Frassetto A, Kowalik EJ, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012; 7:1–9. doi: 10.1371/journal .pone.0035240.
54.
Moeinian M, Ghasemi-Niri SF, Mozaffari S, et al. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis. World J Gastroenterol. 2014; 20(31):10876–10885. doi: 10.3748/ wjg.v20.i31.10876.
55.
Pedersen BK, Steensberg A, Schjerling P. Exercise and interleukin-6. Curr Opin Hematol. 2001; 8(3):137–141. doi: 10.1097/00062752-200105000 -00002.
56.
Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017; 1–8. doi: 10.1155/2017/3831972.
57.
Nilsson MI, Bourgeois JM, Nederveen JP, et al. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One. 2019; 14(1):1–25. doi: 10.1371 /journal.pone.0210863.
58.
Zeng H, Ishaq SL, Zhao FQ, et al. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. Journal of Nutritional Biochemistry. 2016; 35:30–36. doi: 10.1016/j.jnutbio.2016.05.015.
59.
Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: Increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition. 2013; 98(1):16–24. doi: 10.3945/ajcn.113.058743.
60.
Dimitriu PA, Boyce G, Samarakoon A, et al. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environ Microbiol Rep. 2013; 5(2):200–210. doi: 10.1111/j.1758-2229.2012 .00393.x.
61.
Moreno J. Prevotella copri and the microbial pathogenesis of rheumatoid arthritis. Reumatol Clin. 2015; 11(2):61–63. doi: 10.1016/j.reuma .2014.11.001.
62.
Kellermayer R, Dowd SE, Harris RA, et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. The FASEB Journal. 2011; 25(5):1449–1460. doi: 10.1096/fj .10-172205.
63.
Pyne DB, West NP, Cox AJ, et al. Probiotics supplementation for athletes – Clinical and physiological effects. Eur J Sport Sci. 2015; 15(1):63–72. doi: 10.1080/17461391.2014.971879.
64.
Shanahan F. Probiotics in perspective. Gastroenterology. 2010; 139(6):1808–1812. doi: 10.1053 /j.gastro.2010.10.025.
65.
Coughlan KA, Valentine RJ, Ruderman NB, et al. AMPK activation: A therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014; 7:241–253. doi: 10.2147/DMSO .S43731.
66.
Kline KT, Lian H, Zhong XS, et al. Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood. The Journal of Immunology. 2020; 204(4):980–989. doi: 10.4049 /jimmunol.1900639.
67.
Sonoyama K, Fujiwara R, Takemura N, et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol. 2009; 75(20):6451–6456. doi: 10.1128 /AEM.00692-09
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.