eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank

vol. 43
Clinical immunology

Changes in chosen immune system indicators and the level of HSP-70 after single whole-body cryostimulation in healthy men

Barbara Szpotowicz-Czech, Magdalena Wiecek, Jadwiga Szymura, Marcin Maciejczyk, Zbigniew Szygula

(Centr Eur Immunol 2018; 43 (2): 186-193)
Online publish date: 2018/06/30
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
Aim of the study
The aim of our research was to examine the influence of single whole-body cryostimulation (WBC) on chosen immune system indicators including the heat shock protein HSP-70.

Material and methods
The study was carried out among ten young and healthy men (mean age 22.4 ±1.65, with a body mass index of 22.91 ±2.39 kg/m2). The participants were subjected to single whole-body cryostimulation (at –130°C temperatures) in a special cryogenic chamber for 3 minutes. Blood samples were collected three times: before cryostimulation, 30 minutes and 24 hours after WBC. Immunoglobulins (IgA, IgG, IgM), interleukins (IL-6, IL-10, IL-1) and the heat shock protein (HSP-70) were determined in the blood serum.

As a result of a single exposure to cryogenic temperatures, a significant increase in the level of IL-6 was observed 30 minutes after the WBC (p < 0.05) and a decrease in the level of HSP-70 24 hours after the treatment (p < 0.05). There were no significant changes in the level of interleukins (IL-10, IL-1) or immunoglobulins 30 minutes after a single WBC treatment or 24 hours later.

Detailed analysis of the issue shows that a single application of whole-body cryostimulation causes a small, modulating effect on the IL-6 level. Single whole-body cryostimulation treatment has also a slight silencing effect on the HSP-70 level in healthy, young men. Reduction in the concentration of HSP-70 24 hours after WBC may indicate lack of the damaging impact on the spatial structure of the protein due to cryogenic temperatures.


cold exposure, cryogenic temperatures, cold-stress response immunology, interleukin, immunoglobulins, heat shock proteins-70

Smolander J, Leppaluoto J, Westerlund T, et al. (2009): Effects of repeated whole-body cold exposures on serum concentrations of growth hormone, thyrotropin, prolactin and thyroid hormones in healthy women. Cryobiology 58: 275-278.
Bonomi FG, Nardi M, Fappani A, et al. (2012): Impact of different treatment of whole-body cryotherapy on circulatory parameters. Arch Imunol Ther Exp 60: 145-150.
Lubkowska A, Szygula Z, Klimek AJ, Torii M (2010): Do sessions of cryostimulation have influence on white blood cell count, level of IL6 and total oxidative and antioxidative status in healthy men? Eur J Appl Physiol 109: 67-72.
Lubkowska A, Szyguła Z, Chlubek D, Banfi G. (2011): The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men. Scand J Clin Lab Invest 71: 419-425.
Miller E, Mrowicka M, Malinowska K, et al. (2010): Effects of the whole body cryotheraphy on a total antioxidative status and activities of some antioxidative enzymes in blood of patients with multiple sclerosis - preliminary study. J Therm Biol 57: 168-173.
Banfi G, Melegati G, Barassi A, et al. (2009): Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Therm Biol 34: 559.
Pournot H, Bieuzen F, Louis J, et al. (2011): Time-Course of changes in Inflammatory Response after Whole-Body Cryotherapy Multi Exposures following Severe Exercise. PLOS ONE 6: e22748.
Ziemann E, Olek RA, Kujach S, et al. (2012): Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tenis players. J Athl Train 47: 664-672.
Walsch NP, Whitman M (2006): Exercising in enviromental extremes: a greater threat to immune function? Sports Med 36: 941-976.
Brenner IK, Castellani J, Gabaree C, et al. (1999): Immune changes in human during cold exposure: effect of prior heating and exercise. J Appl Physiol 87: 699-710.
Dybek A, Szyguła R, Klimek A, Tubek S (2012): Impact of 10 session of whole-body cryostimulation on aerobic and anaerobic capacity and on selected blood count parameters. Biol Sport 29: 39-43.
Lubkowska A (2012): Cryotherapy: Physiological Considerations and Applications to Physical Therapy. In: Physical Therapy Perspectives in the 21st Century – Challenges and Possibilities. Bettany-Saltikov J (Ed.). InTech 155-176.
Dinarello CA (2000): Proinflammatory cytokines. CHEST 118: 503-508.
Ganong WF, Lange L, Lange J (2005): Review of Medical Physiology. 22nd ed. The McGraw-Hill Companies Inc., New York.
Selfe J, Alexander J, Joseph T, et al. (2014): The effect of three different (-135°C) whole body cryotherapy exposure durations on elite rugby league players. PLOS ONE 9: 1-9.
Banfi G, Lombardi G, Colombini A, Melegati G (2010): Whole-Body Cryotherapy in Athletes. Sports Med 40: 509-517.
Sieroń A, Stanek A, Jagodziński L, et al. (2003): The influence of whole-body cryotherapy on some selected parameters of inflammation in patients with ankylosing spondyitis – preliminary report. Acta Biooptica Inf Med 9: 39-43.
Stryer L (1998): Biochemistry. 4th ed. W.H. Freeman and Company, New York.
Ritossa F (1962): A new puffing pattern induced by temperature shock and DNP in Drosophila melanogaster. Experientia 18: 571-573.
Craig EA, Gambill BD, Nelson RJ (1993): Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57: 402-414.
Hendrick JP, Hartl FU (1993): Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62: 349-384.
Morimoto RI, Tissieres A, Georgopoulos C (1990): Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory, New York.
Tkáčová J, Angelovičová M (2012): Heat shock proteins (HSPs): a review. Animal Sci Biotechnologies 45: 349-353.
Morton JP, Kayani AC, McArdle A, Drust B (2009): The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39: 643-662.
Aufricht C (2005): Heat-shock protein 70: molecular supertool? Pediatr Nephrol 20: 707-713.
Harrison MH, Graveney MJ, Cochrane LA (1982): Some sources of error in the calculation of relative change in plasma volume. Eur J Appl Physiol Occup Physiol 50: 13-21.
Kraemer RR, Brown BS (1984): Alterations in plasma-volume-corected blood components of marathon runners and concomitant relationship to performance. Eur J Appl Physiol Occup Physiol 55: 579-584.
Flavahan NA (1991): The role of alpha2-adrenoceptors as cutaneous thermosensors. NIPS 6: 251-255.
Vanhoutte PM (2011): Physical Factors of Regulation. Compr Physiol Suppl. 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle: 443-474. First published in print 1980.
Pääkkönen T, Leppäluoto J 2002: Cold exposure and hormon secretion: a review. Int J Circ Health 61: 265-276.
Himms-Hagen J (2011): Neural and Hormonal Responses to Prolonged Cold Exposure. Compr Physiol Suppl. 14: Handbook of Physiology, Environmental Physiology: 439-480. First published in print 1996.
Marino F, Sockler JM, Fry JM (1998): Thermoregulatory, metabolic and sympathoadrenal responses to repeated brief exposure to cold. Scand J Clin Lab Invest 58: 537-545.
Felten DL, Felten SY, Bellinger DL, et al. (1987): Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev 100: 225-260.
Kohm AP, Tang Y, Sanders VM, Jones SB (2000): Activation of antigen- specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J Immunol 165: 725-733.
Ramer-Quinn DS, Baker RA, Sanders VM (1997): Activated T helper 1 and T helper 2 cells differentially express the b2-adrenergic receptor. J Immunol 159: 4857-4867.
Gailland R (1994): Neuroendocrine-immune system interactions. The immune-hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab 5: 303-309.
Rhind SG, Castellani JW, Brenner IK, et al. (2001): Intracellular monocyte and serum cytokine expression is modulated by exhausting exercise and cold exposure. Am J Physiol Regul Integr Comp Physiol 281: 66-75.
Dugue B, Lepannen E (2000): Adaptation related cytokines in man: effects of regular swimming in ice-cold water. Clin Physiol 20: 114-121.
Dinarello CA (1997): Role of pro- and anti-inflammatory cytokines during inflammation: experimental and clinical findings. J Biol Regul Homeost Agents 11: 91-103.
Spooren A, Kolmus K, Laureys G, et al. (2011): Interleukin-6, a mental cytokine. Brain Research Rev 67: 157-183.
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011): The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813: 878-888.
Salgado R, Junius S, Benoy I, et al. (2003): Circulating interleukin-6 predictors survival in patients with metastatic breast cancer. Int J Cancer 103: 642-646.
Culig Z, Steiner H, Bartsch G, Hobisch A (2005): Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 95: 497-505.
Opal SM, DePalo VA (2000): Anti-Inflammatory cytokines. Chest 117: 1162-1172.
Simms JE, Smith DE (2010): IL-1 family: regulators of immunity. Nature Rev Immunol 10: 89-102.
Leppaluoto J, Westerlund T, Huttunen P, et al. (2008): Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females. Scand J Clin Lab Invest 68: 145-153.
Hausswirth C, Shaal K, Le Meur Y, et al. (2013): Parasympathetic activity and blood catecholamine responses following a single partial-body cryostimulation and a whole-body cryostimulation. PLOS ONE 8: e72658.
Murray RK, Granner DK, Rodwell VW (2000): Harper’s Illustrated Biochemistry, 27th ed. The McGraw-Hill Companies Inc., New York.
Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001): Immunobiology: The Immune System in Health and Disease. 5th ed. Garland Science, New York.
Gleeson M, Francis JL, Lugg DJ, et al. (2000): One year in Antarctica mucosal immunity at three Australian stations. Immunol Cell Biol 78: 616-622.
Janský L, Pospísilová D, Honzová S, et al. (1996): Immune system of cold-exposed and cold-adapted humans. Eur J Appl Physiol Occup Physiol 72: 445-450.
Currie S, Tufts BL (1997): Synthesis of stress protein 70 (Hsp70) in rainbow trout (Oncorhynchus mykiss) red blood cells. J Exper Biol 200: 607-614.
Cullen KE, Sarge KD (1997): Characterization of Hypothermia-induced Cellular Stress Response in Mouse Tissues. J Biol Chem 272: 1742-1746.
Burton V, Mitchell HK, Young P, Petersen NS (1988): Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8, 3550-3552.
Salotra P, Singh DK, Seal KP, et al. (1995): Expression of DnaK and GroEL homologs in Leuconostoc esenteroides [sic] in response to heat shock, cold shock or chemical stress. FEMS Microbiol Lett 131: 57-62.
Lunal SG, Phillips MC, Moyes CD, Tufts BL (2000): The effect of cell ageing on protein synthesis in rainbow trout red blood cells. J Exp Biol 203: 2219-2228.
Jonak C, Klosner G, Trautinger F (2006): Heat shock protein in the skin. Int J Cosmetic Sci 28: 233-241.
Liu A, Bian H, Huang E, Lee YK (1994): Transient cold shock induces the heat shock response upon recovery at 37°C in human cells. J Biol Chem 269: 14768-14775.
Sarge KD, Murphy SP, Morimoto RI (1993): Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392-1407.
Basu N, Nakano T, Grau EG, Iwama GK (2001): The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124: 97-105.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe