eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
1/2018
vol. 10
 
Share:
Share:
more
 
 
abstract:
Original paper

Clinical analysis of speculum-based vaginal packing for high-dose-rate intracavitary tandem and ovoid brachytherapy in cervical cancer

Shivani Sud, Toni Roth, Ellen Jones

J Contemp Brachytherapy 2018; 10, 1: 32–39
Online publish date: 2018/02/28
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
Intra-vaginal packing is used to fix the applicator and displace organs at risk (OAR) during high-dose-rate intracavitary tandem and ovoid brachytherapy (HDR-ICB). We retain the speculum from applicator placement as a dual-function bladder and rectum retractor during treatment. Our objective is to review salient techniques for OAR displacement, share our packing technique, and determine the reduction in dose to OAR and inter-fraction variability of dose to OAR, associated with speculum-based vaginal packing (SBVP) in comparison to conventional gauze packing during HDR-ICB.

Material and methods
We reviewed HDR-ICB treatment plans for 45 patients, including 10 who underwent both conventional gauze packing and SBVP. Due to institutional inter-provider practice differences, patients non-selectively received either packing procedure. Packing was performed under conscious sedation, followed by cone beam computed tomography used for dosimetric planning. Maximum absolute and percent-of-prescription dose to the International Commission of Radiation Units bladder and rectal points in addition to D0.1cc, D1.0cc, and D2.0cc volumes of the bladder and rectum were analyzed and compared for each packing method using an independent sample t-test.

Results
Of the 179 fractions included, 73% and 27% used SBVP and gauze packing, respectively. For patients prescribed 6 Gy to point A, SBVP was associated with reduced mean D0.1cc bladder dose, inter-fraction variability in D0.1cc bladder dose by 9.3% (p = 0.026) and 9.0%, respectively, and statistically equivalent rectal D0.1cc, D1.0cc, and D2.0cc. Patients prescribed 5.5 Gy or 5 Gy to point A after dose optimization, were less likely to benefit from SBVP. In the intra-patient comparison, 80% of patients had reduction in at least one rectum or bladder parameter.

Conclusions
In patients with conducive anatomy, SBVP is a cost-efficient packing method that is associated with improved bladder sparing and comparable rectal sparing relative to gauze packing during HDR-ICB without general anesthesia.

keywords:

intracavitary brachytherapy, cervical cancer, rectal dose, bladder dose, speculum, retractor

references:
Patankar SS, Tergas AI, Deutsch I et al. High versus low-dose rate brachytherapy for cervical cancer. Gynecol Oncol 2015; 136: 534-541.
Georg P, Kirisits C, Goldner G et al. Correlation of dose-volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy. Radiother Oncol 2009; 91: 173-180.
Uno T, Itami J, Aruga M et al. High dose rate brachytherapy for carcinoma of the cervix: Risk factors for late rectal complications. Int J Radiat Oncol Biol Phys 1998; 40: 615-621.
Clark BG, Souhami L, Roman TN et al. Rectal complications in patients with carcinoma of the cervix treated with concomitant cisplatin and external beam irradiation with high dose rate brachytherapy: a dosimetric analysis. Int J Radiat Oncol Biol Phys 1994; 28: 1243-1250.
Koom WS, Sohn DK, Kim JY et al. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose–volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol Biol Phys 2007; 68: 1446-1454.
Chen SW, Liang JA, Yang SN et al. The prediction of late rectal complications following the treatment of uterine cervical cancer by high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 2000; 47: 955-961.
Pearcey R, Brundage M, Drouin P et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol 2002; 20: 966-972.
Fokdal L, Sturdza A, Mazeron R et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study. Radiother Oncol 2016; 120: 434-440.
Viswanathan AN, Moughan J, Small W Jr et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in radiation therapy oncology group prospective trials 0116 and 0128. Int J Gynecol Cancer 2012; 22: 123-131.
Banerjee R, Kamrava M. Brachytherapy in the treatment of cervical cancer: a review. Int J Womens Health 2014; 6: 555-564.
Eng TY, Patel AJ, Ha CS. Rectal and bladder dose reduction with the addition of intravaginal balloons to vaginal packing in intracavitary brachytherapy for cervical cancer. Brachytherapy 2016; 15: 312-318.
Gaudet M, Lim P, Yuen C et al. Comparative analysis of rectal dose parameters in image-guided high-dose-rate brachytherapy for cervical cancer with and without a rectal retractor. Brachytherapy 2014; 13: 257-262.
Kong I, Vorunganti S, Patel M et al. Prospective comparison of rectal dose reduction during intracavitary brachytherapy for cervical cancer using three rectal retraction techniques. Brachytherapy 2016; 15: 450-455.
Lee KC, Kim TH, Choi JH et al. Use of the rectal retractor to reduce the rectal dose in high dose rate intracavitary bra­chy­therapy for a carcinoma of the uterine cervix. Yonsei Med J 2004; 45: 113-122.
Rai B, Patel FD, Chakraborty S et al. Bladder-Rectum Spacer Balloon versus Vaginal Gauze Packing in High Dose Rate Brachytherapy in Cervical Cancer: A Randomised Study (Part II). Clin Oncol (R Coll Radiol) 2015; 27: 713-719.
Rockey WM, Bhatia SK, Jacobson GM et al. The dosimetric impact of vaginal balloon-packing on intracavitary high-dose-rate brachytherapy for gynecological cancer. J Contemp Brachytherapy 2013; 1: 17-22.
Saini AS, Zhang GG, Finkelstein SE et al. Dose reduction study in vaginal balloon packing filled with contrast for HDR brachytherapy treatment. Int J Radiat Oncol Biol Phys 2011; 80: 1263-1267.
Xu-Welliver M, Lin LL. Evaluation of a balloon-based vaginal packing system and patient-controlled analgesia for patients with cervical cancer undergoing high-dose-rate intracavitary brachytherapy. Pract Radiat Oncol 2013; 3: 263-268.
Rai B, Patel FD, Chakraborty S et al. Bladder-Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma. Int J Radiat Oncol Biol Phys 2013; 85: e217-e222.
International Commission on Radiation Units and Measurements (ICRU) Report 38. Dose and Volume Specification for Reporting Intracavitary Brachytherapy in Gynecology, 1985.
Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image-based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 2005; 74: 235-245.
Pötter R, Haie-Meder C, Van Limbergen E et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiol Oncol 2006; 78: 67-77.
 
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe