Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Data-driven classification of playing styles and match outcome prediction in UEFA Champions League teams

Yonghan Zhong
1, 2
,
Ying Xu
1
,
Kecheng Zhu
3
,
Jorge Diaz-Cidoncha Garcia
4
,
Miguel Ángel Gómez Ruano
5
,
Qing Yi
1

  1. College of Physical Education, Dalian University, 116622 Dalian, China
  2. School of Athletic Performance, Shanghai University of Sport, 200438 Shanghai, China
  3. Applied Technology College of Dalian Ocean University, 116023 Dalian, China
  4. Fédération Internationale de Football Association FIFA-Strasse 20 P.O. Box 8044 Zurich Switzerland
  5. Facultad de Ciencias de la Actividad Física y del Deporte-Inef Madrid, Universidad Politécnica de Madrid, Madrid, Spain
Biol Sport.2026;43:575–586
Online publish date: 2025/11/03
Article file
- 40_05041_Artilce.pdf  [2.26 MB]
Get citation
 
PlumX metrics:
 
1. Sarmento H, Marcelino R, Anguera MT, CampaniCo J, Matos N, LeitAo JC. Match analysis in football: a systematic review. J Sports Sci. 2014;32(20):1831-1843.
2. Liu H, Gomez MA, Goncalves B, Sampaio J. Technical performance and match-to-match variation in elite football teams. J Sports Sci. 2016;34(6):509-518.
3. Forcher L, Altmann S, Forcher L, Jekauc D, Kempe M. The use of player tracking data to analyze defensive play in professional soccer - A scoping review. Int J Sports Sci Coaching. 2022;17(6):1567-1592.
4. Fernandez-Navarro J, Fradua L, Zubillaga A, Ford PR, McRobert AP. Attacking and defensive styles of play in soccer: analysis of Spanish and English elite teams. J Sports Sci. 2016;34(24):2195-2204.
5. Plakias S, Kasioura C, Pamboris GM, et al. A grounded theory for professional soccer teams’ playing styles: Towards a consensus. Int J Sports Sci Coaching. 2025;20(1):159-172.
6. Yue Z, Broich H, Mester J. Statistical analysis for the soccer matches of the first Bundesliga. Int J Sports Sci Coaching. 2014;9(3):553-560.
7. Hewitt A, Greenham G, Norton K. Game style in soccer: what is it and can we quantify it? Int J Perform Anal Sport. 2017;16(1):355-372.
8. Tenga A, Holme I, Ronglan LT, Bahr R. Effect of playing tactics on achieving score-box possessions in a random series of team possessions from Norwegian professional soccer matches. J Sports Sci. 2010;28(3):245-255.
9. Yi Q, Gomez MA, Wang L, Huang G, Zhang H, Liu H. Technical and physical match performance of teams in the 2018 FIFA World Cup: Effects of two different playing styles. J Sports Sci. 2019;37(22):2569-2577.
10. Hughes M, Lovell T. Transition to attack in elite soccer. J Hum Sport Exerc. 2019;14(1):236-253.
11. Kong L, Zhang T, Zhou C, Gomez MA, Hu Y, Zhang S. The evaluation of playing styles integrating with contextual variables in professional soccer. Front Psychol. 2022;13:1002566.
12. Al-Zaiti SS, Alghwiri AA, Hu X, et al. A clinician’s guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML). Eur Heart J Digit Health. 2022;3(2):125-140.
13. Zhou L, Pan S, Wang J, Vasilakos AV. Machine learning on big data: Opportunities and challenges. Neurocomputing. 2017;237:350-361.
14. Plakias S, Moustakidis S, Kokkotis C, Tsatalas T, Papalexi M, Plakias D, et al. Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review. J Funct Morphol Kinesiol. 2023;8(2):39.
15. Nanga S, Bawah AT, Acquaye BA, Billa M-I, Baeta FD, Odai NA, et al. Review of Dimension Reduction Methods. J Data Anal Inf Process. 2021;09(03):189- 231.
16. Berahmand K, Daneshfar F, Salehi ES, Li Y, Xu Y. Autoencoders and their applications in machine learning: a survey. Artif Intell Rev. 2024;57(2):28.
17. Duarte R, Araújo D, Folgado H, Esteves P, Marques P, Davids K. Capturing complex, non-linear team behaviours during competitive football performance. J Syst Sci Complex. 2013;26(1):62-72.
18. Liu H, Hopkins W, Gómez AM, Molinuevo SJ. Inter-operator reliability of live football match statistics from OPTA Sportsdata. Int J Perform Anal Sport. 2013;13(3):803-821.
19. Cabello-Solorzano K, Ortigosa de Araujo I, Peña M, Correia L, Tallón-Ballesteros J. The impact of data normalization on the accuracy of machine learning algorithms: a comparative analysis. In: Proceedings of the International Conference on Soft Computing Models in Industrial and Environmental Applications; August 2023; Cham, Switzerland. Springer Nature Switzerland; 2023:344-353.
20. Wang M, Zhao M, Chen J, Rahardja S. Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks. IEEE Geosci Remote Sens Lett. 2019;16(9):1467-1471.
21. Venkatesh KK, Jelovsek JE, Hoffman M, et al. Postpartum readmission for hypertension and pre-eclampsia: development and validation of a predictive model. BJOG. 2023;130(12):1531-1540.
22. Carpita M, Ciavolino E, Pasca P. Exploring and modelling team performances of the Kaggle European Soccer database. Stat Model. 2019;19(1):74–101.
23. Carpita M, Sandri M, Simonetto A, Zuccolotto P. Discovering the Drivers of Football Match Outcomes with Data Mining. Qual Technol Quant Manag. 2016;12(4):561-577.
24. Karlis D, Ntzoufras I. Bayesian modelling of football outcomes: using the Skellam’s distribution for the goal difference. IMA J Manag Math. 2008;20(2):133-145.
25. Menardi G, Torelli N. Training and assessing classification rules with imbalanced data. Data Min Knowl Discov. 2012;28(1):92-122.
26. McNeish DM. Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences. Multivariate Behav Res. 2015;50(5):471-484.
27. Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1-13.
28. Gramegna A, Giudici P. Shapley Feature Selection. FinTech. 2022;1(1):72-80.
29. Moore A, Bell M. XGBoost, a novel explainable AI technique, in the prediction of myocardial infarction: a UK Biobank cohort study. Clin Med Insights Cardiol. 2022;16: 11795468221133611.
30. Chen X, Zhang H, Guo D, et al. Risk of intraoperative hemorrhage during cesarean scar ectopic pregnancy surgery: development and validation of an interpretable machine learning prediction model. EClinicalMedicine. 2024;78:102969.
31. DeVries Z, Locke E, Hoda M, et al. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine J. 2021;21(7):1135-1142.
32. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30.
33. Lletı́ R, Ortiz MC, Sarabia LA, Sánchez MS. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal Chim Acta. 2004;515(1):87-100.
34. Moustakidis S, Plakias S, Kokkotis C, Tsatalas T, Tsaopoulos D. Predicting Football Team Performance with Explainable AI: Leveraging SHAP to Identify Key Team-Level Performance Metrics. Future Internet. 2023;15(5):174.
35. Lago-Ballesteros J, Lago-Penas C, Rey E. The effect of playing tactics and situational variables on achieving score-box possessions in a professional soccer team. J Sports Sci. 2012;30(14):1455-1461.
36. Collet C. The possession game? A comparative analysis of ball retention and team success in European and international football, 2007-2010. J Sports Sci. 2013;31(2):123-136.
37. Cao S. Passing path predicts shooting outcome in football. Sci Rep. 2024;14(1):9572.
38. Buldu JM, Busquets J, Echegoyen I, Seirul Lo F. Defining a historic football team: Using Network Science to analyze Guardiola’s F.C. Barcelona. Sci Rep. 2019;9(1):13602.
39. Forcher L, Forcher L, Wasche H, et al. Is ball-possession style more physically demanding than counter-attacking? The influence of playing style on match performance in professional soccer. Front Psychol. 2023;14:1197039.
40. Taha T, Ali AY. Greater numbers of passes and shorter possession durations result in increased likelihood of goals in 2010 to 2018 World Cup Champions. PLoS One. 2023;18(1):e0280030.
41. Sapp RM, Spangenburg EE, Hagberg JM. Trends in aggressive play and refereeing among the top five European soccer leagues. J Sports Sci. 2018;36(12):1346-1354.
42. Villemain A, Hauw D. A situated analysis of football goalkeepers’ experiences in critical game situations. Percept Mot Skills. 2014;119(3):811-824.
43. Gonzalez-Rodenas J, Moreno-Perez V, Campo RL, Resta R, Coso JD. Technical and tactical evolution of the offensive team sequences in LaLiga between 2008 and 2021. Is Spanish football now a more associative game? Biol Sport. 2024;41(2):105-113.
44. Yi Q, Gomez MA, Wang L, Huang G, Zhang H, Liu H. Technical and physical match performance of teams in the 2018 FIFA World Cup: Effects of two different playing styles. J Sports Sci. 2019;37(22):2569-2577.
45. Iván-Baragaño I, Bustamante-Sánchez Á, Ardá A, Maneiro R. Effect of team quality on offensive playing style and ball possessions development during the 2023 FIFA Women’s World Cup. Biol Sport. 2025;42(4):49-58.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.