Biol Sport. 2025;42(3):129–139
1. Bonilla DA, Moreno Y, Gho C, Petro JL, Odriozola-Martínez A, Kreider RB. Effects of ashwagandha (Withania somnifera) on physical performance: systematic review and bayesian meta-analysis. J Funct Morphol Kinesiol. 2021; 6(1):20; doi: 10.3390/jfmk6010020.
2.
Malik A, Mehta V, Dahiya V. Effect of ashwagandha (withania somnifera) root powder supplementation on the V̇ O2max and hemoglobin in hockey players. Int J Behav Soc Mov Sci. 2013; 2(3):91–99.
3.
Pérez-Gómez J, Villafaina S, Adsuar JC, Merellano-Navarro E, Collado-Mateo D. Effects of Ashwagandha (Withania somnifera) on V̇ O2max: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12(4):1119. doi: 10.3390 /nu12041119.
4.
Milanović Z, Sporiš G, Weston M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for V̇ O2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015; 45(10):1469–1481. doi: 10.1007 /s40279-015-0365-0.
5.
Faelli E, Panascì M, Ferrando V, Codella R, Bisio A, Ruggeri P. High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males. Int J Environ Res Public Health. 2022; 19(13):8132; doi: 10.3390/ijerph 19138132.
6.
Rosenblat MA, Perrotta AS, Thomas SG. Effect of High-Intensity Interval Training Versus Sprint Interval Training on Time-Trial Performance: A Systematic Review and Meta-analysis. Sport Med. 2020; 50(6):1145–1161. doi: 10.1007/s40279-020-01264-1.
7.
Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017 Jun 1; 18(6):635–646. doi: 10.1111/obr.12532.
8.
Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013; 115(6):785–793. doi: 10.1152/jappl physiol.00445.2013.
9.
Asaka M, Kawano H, Higuchi M. Rowing as an aerobic and resistance exercise for elderly people. J Phys Fit Sport Med. 2012; 1(2):227–234. https://doi.org /10.7600/jpfsm.1.227.
10.
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014; 44(2):211–221. doi: 10 .1007/s40279-013-0110-5.
11.
Perrey S, Ferrari M. Muscle Oximetry in Sports Science: A Systematic Review. Sport Med. 2018; 48(3):597–616. doi: 10.1007/s40279-017-0820-1.
12.
Cettolo V, Ferrari M, Biasini V, Quaresima V. Vastus lateralis O2 desaturation in response to fast and short maximal contraction. Med Sci Sports Exerc. 2007; 39(11):1949–1959. doi: 10.1249/mss .0b013e3181453476.
13.
Perrey S. Evaluating brain functioning with NIRS in sports: Cerebral oxygenation and cortical activation are two sides of the same coin. Front Neuroergonomics. 2022; 3:1022924; doi: 10.3389/fnrgo .2022.1022924.
14.
Borges NR, Driller MW. Wearable Lactate Threshold Predicting Device is Valid and Reliable in Runners. J Strength Cond Res. 2016; 30(8):2212–2218. doi: 10.1519 /JSC.0000000000001307.
15.
Crum EM, O’Connor WJ, Van Loo L, Valckx M, Stannard SR. Validity and reli ability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017; 17(8):1037–1043. doi: 10 .1080/17461391.2017.1330899.
16.
Driller M, Plews D, Borges N. Wearable near Infrared Sensor for Determining an Athlete’s Lactate Threshold during Exercise. NIR news. 2016; 27(4):8–10. doi: 10.1255/nirn.1609.
17.
Hettinga FJ, Konings MJ, Cooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016; 7:619. doi: 10.3389/fphys.2016.00619.
18.
Paquette M, Bieuzen F, Billaut F. Effect of a 3-Weeks Training Camp on Muscle Oxygenation, VO2 and Performance in Elite Sprint Kayakers. Front Sport Act Living. 2020; 2:47. doi: 10.3389/fspor .2020.00047.
19.
Paquette M, Bieuzen F, Billaut F. Sustained Muscle Deoxygenation vs. Sustained High VO2 During High-Intensity Interval Training in Sprint Canoe-Kayak. Front Sport Act Living. 2019; 1:6. doi: 10.3389/fspor.2019.00006.
20.
Neary JP, McKenzie DC, Bhambhani YN. Effects of short-term endurance training on muscle deoxygenation trends using NIRS. Med Sci Sports Exerc. 2002; 34(11):1725–1732. doi: 10.1097 /00005768-200211000-00006.
21.
Klusiewicz A, Rebis K, Ozimek M, Czaplicki A. The use of muscle near-infrared spectroscopy (NIRS) to assess the aerobic training loads of world-class rowers. Biol Sport. 2021; 38(4):713–719. doi: 10.5114/biol sport.2021.103571.
22.
Pereira MIR, Gomes PSC, Bhambhani YN. A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sport Med. 2007; 37(7):615–624. doi: 10.2165/ 00007256-200737070-00005.
23.
Uschner D, Schindler D, Hilgers RD, Heussen N. randomizeR: An R package for the assessment and implementation of randomization in clinical trials. J Stat Softw. 2018; 85(8):1–22. https://doi.org /10.18637/jss.v085.i08.
24.
Driller MW, Fell JW, Gregory JR, Shing CM, Williams AD. The effects of high-intensity interval training in well-trained rowers. Int J Sports Physiol Perform. 2009; 4(1):110–121. doi: 10.1123/ijspp.4.1.110.
25.
Newell J, Higgins D, Madden N, Cruickshank J, Einbeck J, McMillan K, et al. Software for calculating blood lactate endurance markers. J Sports Sci. 2007Oct; 25(12):1403–1409. doi: 10.1080/02640410601128922.
26.
Kuipers H, Verstappen FTJ, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985; 6(4):197–201. doi: 10.1055/s-2008-1025839.
27.
Cayot TE, Robinson SG, Davis LE, Bender PA, Thistlethwaite JR, Broeder CE, et al. Estimating the Lactate Threshold Using Wireless Near-Infrared Spectroscopy and Threshold Detection Analyses. Int J Exerc Sci. 2021; 14(4):284–294. doi: 10.70252/ HBRA1900.
28.
Van Der Zwaard S, Jaspers RT, Blokland IJ, Achterberg C, Visser JM, Den Uil AR, et al. Oxygenation threshold derived from near- Infrared spectroscopy: Reliability and its relationship with the first ventilatory threshold. PLoS One. 2016; 11(9):1–16. doi: 10.1371/journal .pone.0162914.
29.
Ichimura S, Murase N, Osada T, Kime R, Homma T, Ueda C, et al. Age and activity status affect muscle reoxygenation time after maximal cycling exercise. Med Sci Sports Exerc. 2006; 38(7):1277–1281. doi: 10.1249/01.mss.0000227312 .08599.f1.
30.
Nagasawa T. Slower recovery rate of muscle oxygenation after sprint exercise in long-distance runners compared with that in sprinters and healthy controls. J strength Cond Res. 2013; 27(12):3360–3366. doi: 10.1519 /JSC.0b013e3182908fcc.
31.
McCully KK, Halber C, Posner JD. Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. J Gerontol. 1994; 49(3):128–134. doi: 10.1093/geronj/49.3.b128.
32.
Erdfelder E, FAul F, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009; 41(4):1149–1160. doi: 10.3758/BRM .41.4.1149.
33.
Choudhary B, Shetty A, Langade D. Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu. 2015; 36(1):63–68. doi: 10.4103/0974-8520.169002.
34.
Sandhu J, Shah B, Shenoy S, Chauhan S, Lavekar G, Padhi M. Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults. Int J Ayurveda Res. 2010; 1(3):144–149. doi: 10.4103/0974-7788.72485.
35.
Tripathi RK, Salve BA, Petare AU, Raut AA, Rege NN. Effect of Withania somnifera on physical and cardiovascular performance induced by physical stress in healthy human volunteers. Int J Basic Clin Pharmacol. 2016; 5(6):2510–2516. doi.org/10.18203 /2319-2003.ijbcp20164114.
36.
Tiwari S, Gupta SK, Pathak AK. A double-blind, randomized, placebo controlled trial on the effect of Ashwagandha (Withania somnifera dunal.) root extract in improving cardiorespiratory endurance and recovery in healthy athletic adults. J Ethnopharmacol. 2021; 272:113929. doi: 10.1016/j.jep.2021.113929.
37.
Shenoy S, Chaskar U, Sandhu JS, Paadhi MM. Effects of eight-week supplementation of Ashwagandha on cardiorespiratory endurance in elite Indian cyclists. J Ayurveda Integr Med. 2012; 3(4):209–214. doi: 10.4103/0975-9476.104444.
38.
Paquette M, Bieuzen F, Billaut F. The effect of HIIT vs. SIT on muscle oxygenation in trained sprint kayakers. Eur J Appl Physiol. 2021; 121(10):2743–2759. doi: 10.1007/s00421-021-04743-z.
39.
Vasquez Bonilla AA, González-Custodio A, Timón R, Camacho-Cardenosa A, Camacho-Cardenosa M, Olcina G. Training zones through muscle oxygen saturation during a graded exercise test in cyclists and triathletes. Biol Sport. 2023; 40(2):439–448. doi: 10.5114/biolsport .2023.114288.
40.
Yogev A, Arnold JI, Nelson H, Rosenblat MA, Clarke DC, Guenette JA, et al. The effects of endurance training on muscle oxygen desaturation during incremental exercise tests: a systematic review and meta-analysis. Front Sports Act Living. 2024; 6:1406987. doi: 10.3389/fspor.2024.1406987.
41.
Rębiś K, Sadowska D, Starczewski M, Klusiewicz A. Usefulness of Portable Device to Establish Differences in Muscle Oxygenation Between the Wingate Test and Graded Exercise Test: Effect of Gender on Anaerobic and Aerobic Capacity in Speed Skaters. Front Physiol. 2022; 13:809864. doi: 10.3389/fphys .2022.809864.
42.
Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006; 36(2):117–132. doi: 10.2165/0000 7256-200636020-00003.
43.
Gómez Afonso A, Fernandez-Lazaro D, Adams DP, Monserdà-Vilaró A, Fernandez-Lazaro CI. Effects of Withania somnifera (Ashwagandha) on Hematological and Biochemical Markers, Hormonal Behavior, and Oxidant Response in Healthy Adults: A Systematic Review. Curr Nutr Rep. 2023; 12(3):465–477. doi: 10.1007/s13668 -023-00481-0.
44.
Raut AA, Rege NN, Tadvi FM, Solanki P V., Kene KR, Shirolkar SG, et al. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J Ayurveda Integr Med. 2012; 3(3):111–114. doi: 10.4103/0975-9476.100168.
45.
Lopresti AL, Smith SJ, Malvi H, Kodgule R, Wane D. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore). 2019; 98(37):e17186. doi: 10.1097/MD .0000000000017186.
46.
Długołęcka B, Jówko E, Kotowska J, Gierczuk D. Effects of Ashwagandha (Withania Somnifera) Supplementation on Body Composition and Blood Health Indices in Professional Wrestlers. Polish J Sport Tour. 2023; 30(4):26–32. doi: 10.2478/pjst-2023-0022.
47.
Ziegenfuss TN, Kedia AW, Sandrock JE, Raub BJ, Kerksick CM, Lopez HL. Effects of an Aqueous Extract of Withania somnifera on Strength Training Adaptations and Recovery: The STAR Trial. Nutrients. 2018; 10(11):1807. doi: 10.3390/nu10111807.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.