Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Subscription Contact Instructions for authors Journal's Reviewers Special Information
SCImago Journal & Country Rank
vol. 36
Original paper

Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state

Jennifer Hommel, Steffen Öhmichen, Ulrike M. Rudolph, Thomas Hauser, Henry Schulz

Biol Sport. 2019;36(1):47–54
Online publish date: 2018/10/23
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
The purpose of the study was to evaluate and compare the influence of sprint interval training (SIT) and endurance training (ET) on calculated power in maximal lactate steady state (PMLSS) (influenced by the maximal lactate production rate ( VLamax) and maximal oxygen uptake ( VO2max)). Thirty participants were randomly assigned to the a) SIT, b) ET, or c) control group (n = 10 each). Each session consisted of four to six repetitions of 30 s all-out effort Wingate anaerobic tests (SIT) or 60 min cycling at 1.5 to 2.5 mmol∙L-1 blood lactate (analysed every 10 min). Both groups performed training on three days per week, over a period of six weeks. To measure VLamax and VO2max, and to calculate PMLSS, sprint and ramp tests were performed at baseline and after two, four and six weeks of intervention. While SIT resulted in a significant reduction of VLamax (-0.08 ± 0.05 mmol∙L-1∙s-1, p=0.003) after two weeks and remained subsequently stable, VO2max(+2.6 ± 2.4 ml∙min-1∙kg-1, p = 0.044) and PMLSS (+25 ± 14 W, p=0.002) increased, but not before six weeks of SIT. After two weeks of ET, VLamax remained unchanged, but VO2maxincreased by increased by +2.9 ± 2.4 ml∙min-1∙kg-1, p=0.03, and after six weeks by 5.6 ± 3.5 ml∙min-1∙kg-1. The increase of PMLSS was significant after four weeks of ET (+16 ± 14 W, p=0.036) and increased to +32 ± 17 W after six weeks. Comparison of SIT and ET revealed no significant differences for VLamax, VO2maxor PMLSS after six weeks. The control group remained stable in all parameters. In both exercising groups there was a significant improvement of the calculated PMLSS due to different influences of VLamax and VO2max.

Maximal lactate steady state, maximal lactate production rate, Sprint interval training, Endurance training, Cycling

Astrand P, Rodahl K, Dahl H, StrØmme SB. Textbook of work physiology. Physiological bases of exercise. 4th ed., Champaign Ill, Human Kinetics 2003. 656 p.
Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of Low-Volume High-Intensity Interval Training (HIT) on Fitness in Adults: Meta Analysis of Controlled and Non-Controlled Trails. Sports Med. 2014;44:1005-1017.
Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am Physiol Regul Integr Comp Physiol. 2008;295(1):236-42.
Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005; 19(3):527–533.
Mader A. Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungszustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Köln, Dt Sporthochschule; 1984. 264 p.
Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol. 2003; 88(4-5):317–338.
Bleicher A, Mader A, Mester J. Zur Interpretation von Laktatleistungskurven – experimentelle Ergebnisse mit computergestützten Nachberechnungen. Spectrum der Sportwissenschaften. 1998; 10:92–104.
Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med. 1986; 7(1):45–65.
Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11(1):25.
Parra J, Cadefau JA, Rodas G, Amigó N, Cussó R. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand. 2000; 169(2):157–165.
MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol. 1998; 84(6):2138–2142.
Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain. Exerc Sport Sci Rev. 2008; 36(2):58–63.
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586(1):151–160.
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(3):901–911.
Heck H, Schulz H. Methoden der anaeroben Leistungsdiagnostik. Dtsch Z Sportmed. 2002; 53(7-8):202–212.
Craig N, Walsh C, Martin DT, Woolford S, Bourdon P, Stanef T, Barnes P, Savage B. Protocols for the Physiological Assesment of High- Performance Track, Road and Mountain Bike Cyclist. in: Tanner RK, Gore CJ. Physiological Tests for Elite Athletes, Champaign Ill: Human Kinetics; 2000. 560 p.
Mader A, Liesen H, Heck H, Phillipi H, Rost R, Schürch P, Hollmann W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt u Sprtmed. 1976; 27:80-88,109-112.
Adam J, Öhmichen M, Öhmichen E, Rother J, Müller UM, Hauser T, Schulz H. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport. 2015;32(2):97–102.
Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987; 4(6):381–394.
Shephard RJ, Rankinen T, Bouchard C. Test-retest errors and the apparent heterogeneity of training response. Eur J Appl Physiol. 2004; 91(2-3):199–203.
Welsman J, Bywater K, Farr C, Welford D, Armstrong N. Reliability of peak VO(2) and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol. 2005; 94(3):228–234.
Mader A, Heck H. Energiestoffwechselregulation, Erweiterungen des theoretischen Konzepts und seiner Begründung. Nachweis der praktischen Nützlichkeit der Simulation des Energiestoffwechsels. in: Mader A, Allmar H, editors. Brennpunkte der Sportwissenschaft. Möglichkeiten zur Theoriebildung und Ergebnisinterpretation. Sankt Augustin: Academia Verlag Richarz 1994. 258 p.
Kim J, Lee N, Trilk J, Kim EJ, Kim SY, Lee M, Cho HC. Effects of sprint interval training on elite Judoists. Int J Sports Med. 2011;32(12):929–934.
Wahl P, Bloch W, Mester J. Moderne Betrachtungsweisen des Laktats: Laktat ein überschätztes und zugleich unterschätztes Molekül. Schweiz Zeitschr Sportmed Sporttraum. 2009; 57(3):100–107.
Nalcakan GR. The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological And Metabolic Adaptations in Young Healthy Adults. J Hum Kinet. 2014;44: 97–109.
Duffield R, Edge J, Bishop D. Effects of high-intensity interval training on the VO2 response during severe exercise. J Sci Med Sport. 2006;9(3):249–255.
Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269–279.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe