Biol Sport. 2026; 43: 65–75
1. Bjornsen T, Wernbom M, Kirketeig A, et al. Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters. Med Sci Sports Exerc. 2019; 51(2):288–298. doi: 10.1249 /MSS.0000000000001775.
2.
Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017; 51(13):1003–1011. doi: 10.1136 /bjsports-2016-097071.
3.
Wortman RJ, Brown SM, Savage-Elliott I, Finley ZJ, Mulcahey MK. Blood Flow Restriction Training for Athletes: A Systematic Review. Am J Sports Med. 2021; 49(7):1938–1944. doi: 10.1177/0363546520964454.
4.
Patterson SD, Hughes L, Warmington S, et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2019; 10:533:1–15. doi: 10.3389/ fphys.2019.00533.
5.
Scott BR, Girard O, Rolnick N, McKee JR, Goods PSR. An Updated Panorama of Blood-Flow-Restriction Methods. Int J Sports Physiol Perform. 2023; 18(12):1461–1465. doi: 10.1123 /ijspp.2023-0135.
6.
Bjornsen T, Wernbom M, Paulsen G, et al. Frequent blood flow restricted training not to failure and to failure induces similar gains in myonuclei and muscle mass. Scand J Med Sci Sports. 2021; 31(7):1420–1439. doi: 10.1111 /sms.13952.
7.
Sieljacks P, Degn R, Hollaender K, Wernbom M, Vissing K. Non-failure blood flow restricted exercise induces similar muscle adaptations and less discomfort than failure protocols. Scand J Med Sci Sports. 2019; 29(3):336–347. doi: 10.1111/sms.13346.
8.
Clark BC, Manini TM. Can KAATSU Exercise Cause Rhabdomyolysis? Clin J Sport Med. 2017; 27(1):e1–e2. 10.1097/JSM.0000000000000309.
9.
Tabata S, Suzuki Y, Azuma K, Matsumoto H. Rhabdomyolysis After Performing Blood Flow Restriction Training: A Case Report. J Strength Cond Res. 2016; 30(7):2064–2068. 10.1519/JSC.0000000000001295.
10.
Nielsen JL, Aagaard P, Prokhorova TA, et al. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J Physiol. 2017; 595(14):4857–4873. doi: 10.1113/JP273907.
11.
Bjornsen T, Wernbom M, Paulsen G, et al. High-frequency blood flow restricted resistance exercise results in acute and prolonged cellular stress more pronounced in type I than in type II fibers. J Appl Physiol. 2021; 131(2):643–660. doi: 10.1152/ japplphysiol.00115.2020.
12.
Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011; 43(9):1725–1734. doi: 10.1249 /MSS.0b013e318213f880.
13.
Rodriguez-Rosell D, Yanez-Garcia JM, Sanchez-Medina L, Mora-Custodio R, Gonzalez-Badillo JJ. Relationship Between Velocity Loss and Repetitions in Reserve in the Bench Press and Back Squat Exercises. J Strength Cond Res. 2020; 34(9):2537–2547. doi: 10.1519/JSC.00000000 00002881.
14.
Sanchez-Moreno M, Bachero-Mena B, Sanchez-Valdepenas J, Nakamura FY, Pareja-Blanco F. Impact of Generalized Versus Individualized Load-Velocity Equations on Velocity-Loss Magnitude in Bench-Press Exercise: Mixed-Model and Equivalence Analysis. Int J Sports Physiol Perform. 2024; 19(12):1480–1490. doi: 10.1123/ijspp.2024-0194.
15.
Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017; 27(7):724–735. doi: 10.1111/sms.12678.
16.
Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med Sci Sports Exerc. 2020; 52(8):1752–1762. doi: 10.1249 /MSS.0000000000002295.
17.
Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, et al. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand J Med Sci Sports. 2020; 30(11):2154–2166. doi: 10.1111 /sms.13775.
18.
Rodiles-Guerrero L, Cornejo-Daza PJ, Sanchez-Valdepeñas J, et al. Specific Adaptations to 0%, 15%, 25%, and 50% Velocity-Loss Thresholds During Bench Press Training. Int J Sports Physiol Perform. 2022; 17(8):1231–1241. doi: 10.1123/ijspp.2021-0481.
19.
Hogrel JY, Barnouin Y, Azzabou N, et al. NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age. Age. 2015; 37(3):9798. doi: 10.1007/s11357 -015-9798-5.
20.
Nordez A, Jolivet E, Sudhoff I, Bonneau D, de Guise JA, Skalli W. Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging. 2009; 30(5):1116–1123. doi: 10.1002 /jmri.21867.
21.
Cornejo-Daza PJ, Sanchez-Valdepeñas J, Rodiles-Guerrero L, et al. Vastus Lateralis Muscle Size Is Differently Associated With the Different Regions of the Squat Force-Velocity and Load-Velocity Relationships, Rate of Force Development, and Physical Performance Young Men. J Strength Cond Res. 2024; 38(3):450–458. doi: 10.1519 /JSC.0000000000004654.
22.
Sanchez-Medina L, Pallares JG, Perez CE, Moran-Navarro R, Gonzalez-Badillo JJ. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med Int Open. 2017; 1(2):E80–E88. doi: 10.1055/s-0043-102933.
23.
Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010; 31(2):123–129. doi: 10.1055/s-0029-1242815.
24.
Sieljacks P, Knudsen L, Wernbom M, Vissing K. Body position influences arterial occlusion pressure: implications for the standardization of pressure during blood flow restricted exercise. Eur J Appl Physiol. 2018; 118(2):303–312. doi: 10.1007/s00421-017-3770-2.
25.
Courel-Ibañez J, Martinez-Cava A, Moran-Navarro R, et al. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann Biomed Eng. 2019; 47(7):1523–1538. doi: 10.1007/s10439-019-02265-6.
26.
Wasserman S, Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. J Educ Stat. 1988; 13(1):75.
27.
Moran-Navarro R, Perez CE, Mora-Rodriguez R, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017; 117(12):2387–2399. doi: 10.1007/s00421-017-3725-7.
28.
Pareja-Blanco F, Rodriguez-Rosell D, Aagaard P, et al. Time Course of Recovery From Resistance Exercise With Different Set Configurations. J Strength Cond Res. 2020; 34(10):2867–2876. doi: 10.1519 /JSC.0000000000002756.
29.
Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011; 21(6):e231–241. doi: 10 .1111/j.1600-0838.2010.01260.x.
30.
Rodriguez-Rosell D, Yanez-Garcia JM, Mora-Custodio R, Sanchez-Medina L, Ribas-Serna J, Gonzalez-Badillo JJ. Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports. 2021; 31(8):1621–1635. doi: 10.1111 /sms.13967.
31.
Galiano C, Pareja-Blanco F, Hidalgo de Mora J, Saez de Villarreal E. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J Strength Cond Res. 2022; 36(2):340–345. doi: 10.1519 /JSC.0000000000003487.
32.
Davids CJ, Roberts LA, Bjornsen T, Peake JM, Coombes JS, Raastad T. Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications. Sports Med. 2023; 53(11):2077–2093. doi: 10.1007/s40279-023-01900-6.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.