eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
vol. 10
Original paper

End-to-end test for computed tomography-based high-dose-rate brachytherapy

Fabian Krause, Franziska Risske, Susann Bohn, Marc Delaperriere, Jürgen Dunst, Frank-André Siebert

J Contemp Brachytherapy 2018; 10, 6: 551–558
Online publish date: 2018/12/28
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
One of the important developments in brachytherapy in recent years has been the clinical implementation of complex modern technical procedures. Today, 3D-imaging has become the standard procedure and it is used for contouring and precise position determination and reconstruction of used brachytherapy applicators. Treatment planning is performed on the basis of these imaging methods, followed by data transfer to the afterloading device. Therefore, checking the entire treatment chain is of high importance. In this work, we describe an end-to-end test for computed tomography (CT)-based brachytherapy with an high-dose-rate (HDR) afterloading device, which fulfills the recommendation of the German radiation-protection-commission.

Material and methods
The treatment chain consists of a SOMATOM S64 CT scanner (Siemens Medical), the treatment planning system (TPS) BrachyVision v.13.7 (VMS), which utilizes the calculation formalism TG-43 and the Acuros algorithm v. 1.5.0 (VMS) as well as GammaMedplus HDR afterloader (VMS) using an Ir-192 source. Measurement setups for common brachytherapy applicators are defined in a water phantom, and the required PMMA applicator holders are developed. These setups are scanned with the CT and the data is imported into the TPS. Computed TPS reference dose values for significant points located on the side of the applicator are compared with dose measurements performed with a PinPoint 3D chamber 31016 (PTW Freiburg).

The deviations for the end-to-end test between computed and measured values are shown to be ≤ 5%, when using an implant needle or vaginal cylinder. Furthermore, it can be demonstrated that the test procedure provides reproducible results, while repositioning the applicators without carrying out a new CT-scan.

The end-to-end test presented allows a practice-oriented realization for checking the whole treatment chain for HDR afterloading technique and CT-imaging. The presented phantom seems feasible for performing periodic system checks as well as to verify newly introduced brachytherapy techniques with sufficient accuracy.


CT-based brachytherapy, CT planning, end-to-end test, HDR, treatment chain

Beaulieu L, Carlsson TA, Carrier JF et al. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation. Med Phys 2012; 39: 6208-6236.
Wilkinson DA, Kolar MD. Failure modes and effects analysis applied to high-dose-rate brachytherapy treatment planning. Brachytherapy 2013; 12: 382-386.
Mayadev J, Dieterich S, Harse R et al. A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy. Brachytherapy 2015; 14: 866-875.
Roué A, Ferreira IH, Van Dam J et al. The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy. Radiother Oncol 2006; 78: 78-83.
Okamoto H, Nakamura S, Nishioka S et al. Independent assessment of source position for gynecological applicator in high-dose-rate brachytherapy. J Contemp Brachytherapy 2017; 9: 477-486.
Strahlenschutzkommission. Physikalisch-technische Qualitätssicherung in der Strahlentherapie – Vorschläge zur Prüfung des gesamten Behandlungssystems. Empfehlung der Strahlenschutzkommission. BANZ 2011; 66: 1563.
Rickey DW, Sasaki D, Bews J. A quality assurance tool for high-dose-rate brachytherapy. Med Phys 2010; 37: 2525-2532.
Manikandan A, Biplab S, David PA et al. Relative dosimetrical verification in high dose rate brachytherapy using two-dimensional detector array IMatriXX. J Med Phys 2011; 36: 171-175.
Gainey M, Kollefrath M, Bruggmoser G. SU‐E‐T‐150: Brachytherapy QA Employing a High Resolution Liquid Filled Ionisation Chamber Array: Initial Experience and Limitations. Med Phys 2015; 42: 3366.
Casey KE, Alvarez P, Kry SF et al. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescene dosimetry. Med Phys 2013; 40: 112102.
Guiral P, Ribouton P, Jalade R et al. Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance. Med Phys 2016; 43: 5240-5249.
Espinoza A, Beeksma B, Petasecca M et al. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance. Med Phys 2013; 40: 111702.
Espinoza A, Petasecca M, Fuduli I et al. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance. Med Phys 2015; 42: 663-673.
Gao W. Minimizing targeting error in high-dose-rate brachytherapy with an end-to-end source positioning test. Brachytherapy 2016; 15: 171-172.
Kollefrath M, Bruggmoser G, Nanko N et al. In-phantom dosimetric measurements as quality control for brachytherapy: System check and constancy check. Z Med Phys 2015; 25: 176-185.
Palmer AL, Lee C, Ratcliffe AJ et al. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distribution in high dose rate (HDR) brachytherapy. Phys Med Biol 2013; 58: 6623-6640.
Dössel O, Schlegel WC (eds.). Effect of Varying Phantom Size in Dosimetry of Iridium-192: A Comparison of Experimental Data with EGSnrc Monte Carlo Calculation. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, 2009 September 7-12; Munich, Germany. Springer 2009; Berlin, Heidelberg.
Deutsches Institut für Normung. Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung – Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit Ionisationskammern. Norm DIN 6800-2 2008. Beuth; Berlin 2008.
Chofor N, Harder D, Selbach HJ, Poppe B. The mean photon energy ĒF at the point of measurement determines the detector-specific radiation quality correction factor kQ, M in (192)Ir brachytherapy dosimetry. Z Med Phys 2016; 26: 238-250.
Krause F, Krause TM, Siebert FA. Commissioning of a model-based dose calculation algorithm for brachytherapy according to the TG-186 report. Radiother Oncol 2015; 115: 140.
DeWerd LA, Ibbott GS, Meigooni AS et al. A dosimetric uncertainty for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO. Med Phys 2011; 38: 782-801.
Kirisits C, Rivard MJ, Baltas D et al. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM. Radiother Oncol 2014; 110: 199-212.
Andersen CE, Nielsen SK, Lindegaard JC et al. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy. Med Phys 2009; 36: 5033-5043.
Kertzscher G, Andersen CE, Siebert FA et al. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3: C dosimetry and a novel statistical error decision criterion. Radiother Oncol 2011; 100: 456-462.
Tanderup K, Beddar S, Andersen CE et al. In vivo dosimetry in brachytherapy. Med Phys 2013; 40: 070902.
Seuntjens J, Olivares M, Evans M et al. Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols. Med Phys 2005; 32: 2945-2953.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe