eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank

4/2014
vol. 39
 
Share:
Share:
more
 
 
abstract:

Experimental immunology
Paeoniflorin reduced BLP-induced inflammatory response by inhibiting the NF-κB signal transduction in pathway THP-1 cells

Qian Zhang, Jing Zhou, Min Huang, Liqing Bi, Suming Zhou

(Centr Eur J Immunol 2014; 39 (4): 461-467)
Online publish date: 2014/12/15
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Sepsis is a severe illness in which the bloodstream is overwhelmed by bacteria. Despite effective antibiotic treatment, the mortality of septic shock remains high. In this study, we examined a potential usage of paeoniflorin, anti-inflammatory component for the treatment of sepsis. We established an inflammatory cell line by stimulating human THP-1 cell line with bacterial lipoprotein (BLP), which resulted in an activation of nuclear factor κB (NF-κB) p65 dependent-signal pathway, and in consequence, an increase in tumor necrosis factor α (TNF-α) and interleukin (IL)-6 expression. With this model, we studied the effect of paeoniflorin on the expression of NF-κB and Toll-like receptor 2 (TLR2) mediated signal transduction. Our data indicated that paeoniflorin directly inhibited activation of NF-κB p65, thereby reduced the expression of TNF-α and IL-6 in the BLP stimulated THP-1 cells. Paeoniflorin was also found to inhibit IκB phosphorylation and degradation. However, no significant differences in TLR2 and myeloid differentiation factor 88 (MyD88) expression were observed; therefore, these signaling molecules may not have much anti-inflammatory effect in our cellular model. As such, our current study provided a molecular base for the potential use of paeoniflorin in therapeutic treatment of sepsis induced by bacterial lipoprotein.
keywords:

paeoniflorin, bacterial lipoprotein, Toll-like receptor, and TNF-α

FEATURED PRODUCTS
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe