Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Contemporary Oncology
eISSN: 1897-4309
ISSN: 1428-2526
Contemporary Oncology/Współczesna Onkologia
Current issue Archive Manuscripts accepted About the journal Supplements Addendum Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Review paper

LINE-1 retrotransposon activation drives age-associated inflammation via cytoplasmic cDNA-STING/type I interferon signalling: therapeutic potential of reverse transcriptase inhibition

Arshad Mehmood
1
,
Yue Zhu Xue
2
,
Habab Merghani Yassin
3
,
Mohammad Zubair
4
,
Syed Adnan Rahmat
5
,
Aftab Ahmad
6

  1. Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
  2. Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
  3. Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
  4. Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
  5. Cancer Institute, The Fourth Hospital of Hebei Medical University/ The Tumour Hospital of Hebei Province, Shijiazhuang, China
  6. Research Centre, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumour Hospital, Shijiazhuang, Hebei Province 050011, China
Contemp Oncol (Pozn) 2025; 29 (3)
Online publish date: 2025/06/26
Article file
Get citation
 
PlumX metrics:
 
1. Huang CR, Burns KH, Boeke JD. Active transposition in genomes. Ann Rev Genet 2012; 46: 651-675.
2. De Koning JAP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 2011; 7: e1002384.
3. Hancks DC, Kazazian HH Jr. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012; 22: 191-203.
4. Rodić N, Sharma R, Sharma R, et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 2014; 184: 1280-1286.
5. Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 2014; 15: 497-506.
6. De Cecco M, Criscione SW, Peckham EJ, et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 2013; 12: 247-256.
7. Van Meter M, Kashyap M, Rezazadeh S, et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 2014; 5: 5011.
8. De Cecco M, Ito T, Petrashen AP, et al. Author Correction: L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019; 572: E5.
9. Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nature Immunol 2014; 15: 415-422.
10. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev 2014; 28: 99-114.
11. Maxwell PH. What might retrotransposons teach us about aging? Current Genetics 2016; 62: 277-282.
12. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174: 30-46.
13. Sedivy JM, Kreiling JA, Neretti N, et al. Death by transposition – the enemy within? Bioessays 2013; 35: 1035-1043.
14. Lenart P, Novak J, Bienertova-Vasku J. PIWI-piRNA pathway: setting the pace of aging by reducing DNA damage. Mech Ageing Dev 2018; 173: 29-38.
15. Tóth KF, Pezic D, Stuwe E, et al. The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol; 2016: 886: 51-77.
16. Wang J, Geesman GJ, Hostikka SL, et al. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10: 3016-3030.
17. Khan M, Shah S, Lv B, et al. Molecular mechanisms of Alu and LINE-1 interspersed repetitive sequences reveal diseases of visual system dysfunction. Ocul Immunol Inflamm 2023; 31: 1848-1858.
18. De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019; 566: 73-78.
19. Gentili M, Lahaye X, Nadalin F, et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Reports 2019; 26: 2377-2393.e13.
20. Thomas CA, Tejwani L, Trujillo CA, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 2017; 21: 319-331.e8.
21. Ishak CA, Marshall AE, Passos DT, et al. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Molecular Cell 2016; 64: 1074-1087.
22. Li Q, Zhang Y, Fu J, et al. FOXA1 mediates p16(INK4a) activation during cellular senescence. EMBO J 2013; 32: 858-873.
23. Denli AM, Narvaiza I, Kerman BE, et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 2015; 163: 583-593.
24. Wallace NA, Belancio VP, Deininger PL. L1 mobile element expression causes multiple types of toxicity. Gene 2008; 419: 75-81.
25. Boissinot S, Roos C, Furano AV. Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys. J Mol Evol 2004; 58: 122-130.
26. Bratthauer GL, Cardiff RD, Fanning TG. Expression of LINE-1 retrotransposons in human breast cancer. Cancer 1994; 73: 2333-2336.
27. Ergün S, Buschmann C, Heukeshoven J, et al. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 2004; 279: 27753-27763.
28. Dai L, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 2011; 12: 18.
29. Dhanwani R, Takahashi M, Sharma S. Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Curr Op Immunol 2018; 50: 82-87.
30. Fowler BJ, Gelfand BD, Kim Y, et al. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 2014; 346: 1000-1003.
31. Mehmood A, Ali W, Din ZU, et al. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson’s disease. Brain Behav 2021; 11: e2280.
32. Brouha B, Schustak J, Badge RM, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 2003; 100: 5280-5285.
33. Kazazian HH Jr. An estimated frequency of endogenous insertional mutations in humans. Nat Genet 1999;. 22: 130.
34. Gasior SL, Wakeman TP, Xu B, et al. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006; 357: 1383-1393.
35. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006; 312: 1059-1063.
36. Gilbert N, Lutz-Prigge S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell 2002; 110: 315-325.
37. Symer DE, Connelly C, Szak ST, et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell 2002; 110: 327-338.
38. Gilbert N, Lutz S, Morrish TA, Moran JV. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 2005; 25: 7780-7795.
39. Lumpkin CK Jr, McGill JR, Riabowol KT, et al. Extrachromosomal circular DNA and aging cells. Adv Exp Med Biol 1985; 190: 479-4793.
40. Herbig U, Ferreira M, Condel L, et al. Cellular senescence in aging primates. Science 2006; 311: 1257.
41. Coppé JP, Desprez PY, Krtolica A, et al., The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118.
42. Mehmood A, Song S, Du X, et al. mRNA expression profile reveals differentially expressed genes in splenocytes of experimental autoimmune encephalomyelitis model. Int J Exp Pathol 2023; 104: 247-257.
43. Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22: 78-83.
44. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015; 14: 644-658.
45. Tchkonia T, Morbeck DE, von Zglinicki T, et al. Fat tissue, aging, and cellular senescence. Aging Cell 2010; 9: 667-684.
46. Mattson MP. Perspective: does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9: 69-76.
47. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011; 479: 232-236.
48. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016; 530: 184-189.
49. Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 2016; 17: 7-19.
50. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921.
51. Chinwalla AT, Cook LL, Kimberly D. Delehaunty, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420: 520-562.
52. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003; 35: 41-48.
53. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 2015; 3: Mdna3-0061-2014.
54. Iskow RC, McCabe MT, Mills RE, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010; 141: 1253-1261.
55. Lee E, Iskow R, Yang L, et al. Landscape of somatic retrotransposition in human cancers. Science 2012; 337: 967-971.
56. Reilly MT, Faulkner GJ, Dubnau J, et al. The role of transposable elements in health and diseases of the central nervous system. J Neurosci 2013; 33: 17577-17586.
57. Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011; 12: 615-627.
58. Crichton JH, Dunican DS, Maclennan M, et al. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 2014; 71: 1581-1605.
59. Laurent GS, Hammell N, McCaffrey TA. A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 2010; 131: 299-305.
60. Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008; 135: 907-918.
61. Ablasser A, Hemmerling I, Schmid-Burgk JL, et al. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol 2014;192: 5993-5997.
62. Shah S, Yu S, Zhang C, et al. Retrotransposon SINEs in age-related diseases: mechanisms and therapeutic implications. Ageing Res Rev 2024; 101: 102539.
63. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017; 550: 402-406.
64. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17: 363-375.
65. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69: S4-9.
66. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013; 153: 1194-1217.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.