Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Morning priming exercises for explosive performance: time course effects of two-way ballistic and strength-based protocols

Yiheng Zeng
1, 2
,
Tao Wu
1, 2
,
Junlei Lin
1, 2
,
Wei Li
1, 2
,
Paul B. Gastin
3
,
Olivier Girard
4

  1. School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
  2. Force-velocity Laboratory, Beijing Sport University, Beijing, China
  3. Department of Sport and Exercise Science, La Trobe University, Melbourne, Australia
  4. School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
Biol Sport. 2026;43:815–827
Online publish date: 2026/01/23
Article file
- 61_05323_Article.pdf  [3.80 MB]
Get citation
 
PlumX metrics:
 
1. Mason BR, Argus CK, Norcott B, Ball NB. Resistance training priming activity improves upper-body power output in rugby players: implications for game day performance. J Strength Cond Res. 2017; 31(4):913–920. doi: 10.1519 /jsc.0000000000001552.
2. Cook CJ, Kilduff LP, Crewther BT, Beaven M, West DJ. Morning based strength training improves afternoon physical performance in rugby union players. J Sci Med Sport. 2014; 17(3):317–321. doi: 10.1016/j.jsams .2013.04.016.
3. Brown I, Loeb G. Post-activation potentiation—a clue for simplifying models of muscle dynamics. Integr Comp Biol. 1998; 38(4):743–754. doi: 10.1093/icb/38.4.743.
4. Holmberg PM, Kelly VG. Priming the conversation full circle: exploring mechanistic explanations for same-day performance effects following priming exercise stimuli. Int J Sports Physiol Perform. 2025:1–5. doi: 10.1123 /ijspp.2025-0105.
5. Harrison PW, James LP, Jenkins DG, McGuigan MR, Schuster RW, Kelly VG. Time course of neuromuscular, hormonal, and perceptual responses following moderate- and high-load resistance priming exercise. Int J Sports Physiol Perform. 2021; 16(10):1472–1482. doi: 10.1123/ijspp.2020-0646.
6. Seitz L, Haff G. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016; 46(2):231–240. doi: 10.1007 /s40279-015-0415-7.
7. Wang Z, Yan B, Wang Y, Zhang C, Chen F, Girard O. A comparison of morning priming exercise using traditional-set and cluster-set configurations on afternoon explosive performance. Biol Sport. 2024; 41(3):129–135. doi: 10.5114 /biolsport.2024.133003.
8. Knight J, Russell M, Cunningham D, Cook C, Waldron M, Kilduff L. The effects of morning priming exercise on afternoon physical and cognitive performance in male rugby union players. bioRxiv. Preprint posted online May 29, 2025. doi: 10.1101/2025.05.29.656928.
9. Donghi F, Rampinini E, Bosio A, Fanchini M, Carlomagno D, Maffiuletti NA. Morning priming exercise strategy to enhance afternoon performance in young elite soccer players. Int J Sports Physiol Perform. 2021; 16(3):407–414. doi: 10.1123 /ijspp.2020-0094.
10. Tsoukos A, Veligekas P, Brown LE, Terzis G, Bogdanis GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res. 2018; 32(3):643–650. doi: 10.1519 /jsc.0000000000001812.
11. Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Prevalence and application of priming exercise in high performance sport. J Sci Med Sport. 2020; 23(3):297–303. doi: 10.1016 /j.jsams.2019.09.010.
12. Oh S, Mierau A, Thevis M, et al. Effects of different exercise intensities in the morning on football performance components in the afternoon. Ger J Exerc Sport Res. 2018; 48(2):235–244. doi: 10.1007/s12662-018-0520-5.
13. Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Resistance priming to enhance neuromuscular performance in sport: evidence, potential mechanisms and directions for future research. Sports Med. 2019; 49(10):1499–1514. doi: 10.1007/s40279-019-01136-3.
14. Raastad T, Hallén J. Recovery of skeletal muscle contractility after high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000; 82(3):206–214. doi: 10.1007/s004210050673.
15. Garbisu-Hualde A, Santos-Concejero J. Post-activation potentiation in strength training: a systematic review of the scientific literature. J Hum Kinet. 2021; 78:141–150. doi: 10.2478/hukin -2021-0034.
16. Nishioka T, Okada J. Ballistic exercise versus heavy resistance exercise protocols: which resistance priming is more effective for improving neuromuscular performance on the following day? J Strength Cond Res. 2023; 37(10):1939–1946. doi: 10 .1519/jsc.0000000000004512.
17. Saez Saez de Villarreal E, González-Badillo JJ, Izquierdo M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur J Appl Physiol. 2007; 100(4):393–401. doi: 10.1007/s00421-007-0440-9.
18. Gjesdal BE, Mæland S, Bogen B, et al. Ballistic strength training in adults with cerebral palsy may increase rate of force development in plantar flexors, but transition to walking remains unclear: a case series. BMC Sports Sci Med Rehabil. 2022; 14(1):101. doi: 10.1186/s13102-022-00487-1.
19. McKay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022; 17(2):317–331. doi: 10.1123 /ijspp.2021-0451.
20. Heishman AD, Curtis MA, Saliba EN, Hornett RJ, Malin SK, Weltman AL. Comparing performance during morning vs. afternoon training sessions in intercollegiate basketball players. J Strength Cond Res. 2017; 31(6):1557–1562. doi: 10.1519 /JSC.0000000000001882.
21. Hagerupsen K, Pedersen S, Giller NB, et al. Comparison of resistance training using barbell half squats and trap bar deadlifts on maximal strength, power performance, and lean mass in recreationally active females: an eight-week randomised trial. BMC Sports Sci Med Rehabil. 2024; 16(1):124. doi: 10.1186/s13102-024-00911-8.
22. Krčmár M, Krčmárová B, Bakaľár I, Šimonek J. Acute performance enhancement following squats combined with elastic bands on short sprint and vertical jump height in female athletes. J Strength Cond Res. 2021; 35(2):318–324. doi: 10.1519 /jsc.0000000000003881.
23. Madruga-Parera M, Bishop C, Read P, Lake J, Brazier J, Romero-Rodriguez D. Jumping-based asymmetries are negatively associated with jump, change of direction, and repeated sprint performance, but not linear speed, in adolescent handball athletes. J Hum Kinet. 2020; 71:47–58. doi: 10.2478 /hukin-2019-0095.
24. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; 2013.
25. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016; 15(2):155–163. doi: 10.1016/j.jcm.2016.02.012.
26. McMahon JJ, Lake JP, Comfort P. Reliability of and relationship between flight time to contraction time ratio and reactive strength index modified. Sports (Basel). 2018; 6(3):81. doi: 10.3390 /sports6030081.
27. James LP, Talpey SW, Young WB, Geneau MC, Newton RU, Gastin PB. Strength classification and diagnosis: not all strength is created equal. Strength Cond J. 2023; 45(3):333–341. doi: 10.1519/ssc.0000000000000744.
28. Baker D, Newton RU. Acute effect on power output of alternating an agonist and antagonist muscle exercise during complex training. J Strength Cond Res. 2005; 19(1):202–205. doi: 10.1519/1533-4287(2005)19 <202:Aeopoo>2.0.Co; 2.
29. Dias de Oliveira F, Oliveira A, Rizatto G, Denadai B. Resistance training for explosive and maximal strength: effects on early and late rate of force development. J Sports Sci Med. 2013; 12(3):402–408.
30. Carson R. Changes in muscle coordination with training. J Appl Physiol (1985). 2006; 101(5):1506–1513. doi: 10.1152/japplphysiol.00544.2006.
31. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011; 41(1):17–38. doi: 10.2165 /11537690-000000000-00000.
32. de Oliveira FB, Rizatto GF, Denadai BS. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin Physiol Funct Imaging. 2013; 33(4):282–287. doi: 10.1111/cpf.12025.
33. Del Vecchio A, Negro F, Holobar A, et al. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol. 2019; 597(9):2445–2456. doi: 10.1113 /jp277396.
34. González-García J, Giráldez-Costas V, Ruiz-Moreno C, Gutiérrez-Hellín J, Romero-Moraleda B. Delayed potentiation effects on neuromuscular performance after optimal load and high load resistance priming sessions using velocity loss. Eur J Sport Sci. 2021; 21(12):1617–1627. doi: 10.1080 /17461391.2020.1845816.
35. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950; 1(4667):1383–1392.
36. Hingst J, Bruhn L, Hansen MB, et al. Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Mol Metab. 2018; 16:24–34. doi: 10.1016 /j.molmet.2018.07.001.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2026 Termedia Sp. z o.o.
Developed by Bentus.