eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
4/2018
vol. 10
 
Share:
Share:
more
 
 
abstract:
Original paper

Plan reproducibility of intraoperatively custom-built linked seeds compared to loose seeds for prostate brachytherapy

Tomoya Kaneda, Toshio Ohashi, Masanori Sakayori, Shinya Sutani, Shoji Yamashita, Tetsuo Momma, Shinichi Takahashi, Takashi Hanada, Naoyuki Shigematsu

J Contemp Brachytherapy 2018; 10, 4: 291–296
Online publish date: 2018/08/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
Few studies have compared the implant quality of linked and loose seeds for prostate brachytherapy. This study aimed to evaluate and compare plan reproducibility of intraoperatively built custom linked seeds and loose seeds for prostate brachytherapy.

Material and methods
Between December 2010 and March 2014, 76 localized prostate cancer patients received Iodine-125 brachytherapy with external beam radiotherapy. Linked and loose seeds were implanted in 39 and 37 patients, respectively. The primary endpoint was the mean (± standard deviation) of the absolute change in the minimum dose received by 90% of the prostate volume between intraoperative and post-operative planning (ΔD90) to confirm plan reproducibility. Comparisons between the groups were evaluated using 2-sample t tests.

Results
The ΔD90 values were 6.95 ± 11.6% and –0.41 ± 8.5% for the loose and linked seed groups, respectively (p < 0.01). The linked seed group showed decreased post-operative D90 (118.8% vs. 127.2%), V150 (51.7% vs. 66.7%), and RV100 (0.44 ml vs. 0.61 ml) compared to the loose seed group (p < 0.01), whereas lung migration tended to be reduced (0% vs. 8%).

Conclusions
The plan reproducibility of the linked seed group was better than that of the loose seed group. Moreover, the linked seed group showed less migration and lower rectal dose.

keywords:

brachytherapy, dosimetry, linked seed, migration, prostate cancer

references:
Yorozu A, Kuroiwa N, Takahashi A et al. Permanent prostate brachytherapy with or without supplemental external beam radiotherapy as practiced in Japan: outcomes of 1300 patients. Brachytherapy 2015; 14: 111-117.
Grimm P, Billiet I, Bostwick D et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int 2012; 109 Suppl 1: 22-29.
Morris WJ, Keyes M, Spadinger I et al. Population-based 10-year oncologic outcomes after low-dose-rate brachytherapy for low-risk and intermediate-risk prostate cancer. Cancer 2013; 119: 1537-1546.
Okamoto K, Wada A, Kohno N. High biologically effective dose radiation therapy using brachytherapy in combination with external beam radiotherapy for high-risk prostate cancer. J Contemp Brachytherapy 2017; 9: 1-6.
Merrick GS, Galbreath RW, Butler WM et al. Prostate cancer-specific death in brachytherapy treated high-risk patients stratified by pre-treatment PSA. J Contemp Brachytherapy 2017; 9: 297-303.
Merrick GS, Butler WM, Galbreath RW et al. Stratification of brachytherapy-treated intermediate-risk prostate cancer patients into favorable and unfavorable cohorts. J Contemp Brachytherapy 2015; 7: 430-436.
Sekiguchi A, Ishiyama H, Satoh T et al. 125Iodine monotherapy for Japanese men with low- and intermediate-risk prostate cancer: outcomes after 5 years of follow-up. J Radiat Res 2014; 55: 328-333.
Ohashi T, Yorozu A, Saito S et al. Combined brachytherapy and external beam radiotherapy without adjuvant androgen deprivation therapy for high-risk prostate cancer. Radiat Oncol 2014; 9: 13.
Reed DR, Wallner KE, Merrick GS et al. A prospective randomized comparison of stranded vs. loose 125I seeds for prostate brachytherapy. Brachytherapy 2007; 6: 129-134.
Fuller DB, Koziol JA, Feng AC. Prostate brachytherapy seed migration and dosimetry: analysis of stranded sources and other potential predictive factors. Brachytherapy 2004; 3: 10-19.
Lee WR, deGuzman AF, Tomlinson SK et al. Radioactive sources embedded in suture are associated with improved postimplant dosimetry in men treated with prostate brachytherapy. Radiother Oncol 2002; 65: 123-127.
Tapen EM, Blasko JC, Grimm PD et al. Reduction of radioactive seed embolization to the lung following prostate brachytherapy. Int J Radiat Oncol Biol Phys 1998; 42: 1063-1067.
Fagundes HM, Keys RJ, Wojcik MF et al. Transperineal TRUS-guided prostate brachytherapy using loose seeds versus RAPIDStrand: a dosimetric analysis. Brachytherapy 2004; 3: 136-140.
Heysek RV, Gwede CK, Torres-Roca J et al. A dosimetric analysis of unstranded seeds versus customized stranded seeds in transperineal interstitial permanent prostate seed brachytherapy. Brachytherapy 2006; 5: 244-250.
Lin K, Lee SP, Cho JS et al. Improvements in prostate brachytherapy dosimetry due to seed stranding. Brachytherapy 2007; 6: 44-48.
Saibishkumar EP, Borg J, Yeung I et al. Loose seeds vs. stranded seeds: a comparison of critical organ dosimetry and acute toxicity in (125) I permanent implant for low-risk prostate cancer. Brachytherapy 2008; 7: 200-205.
Zauls AJ, Ashenafi MS, Onicescu G et al. Comparison of intraoperatively built custom linked seeds versus loose seed gun applicator technique using real-time intraoperative planning for permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 2011; 81: 1010-1016.
Guinot JL, Ricos JV, Tortajada MI et al. Comparison of permanent (125) I seed implants with two different techniques in 500 cases of prostate cancer. J Contemp Brachytherapy 2015; 7: 258-264.
Saibishkumar EP, Borg J, Yeung I et al. Sequential comparison of seed loss and prostate dosimetry of stranded seeds with loose seeds in 125I permanent implant for low-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009; 73: 61-68.
Langley SE, Laing RW. 4D Brachytherapy, a novel real-time prostate brachytherapy technique using stranded and loose seeds. BJU Int 2012; 109 Suppl 1: 1-6.
Hinnen KA, Moerland MA, Battermann JJ et al. Loose seeds versus stranded seeds in I-125 prostate brachytherapy: differences in clinical outcome. Radiother Oncol 2010; 96: 30-33.
Jarusevicius L, Inciura A, Juozaityte E et al. Comparison of implant quality between loose and intra-operatively linked iodine-125 seeds in prostate cancer brachytherapy. J Radiat Res 2012; 53: 439-446.
Katayama N, Takemoto M, Takamoto A et al. Comparison of implant quality between intraoperatively built custom-linked seeds and loose seeds in permanent prostate brachytherapy using sector analysis. J Radiat Res 2016; 57: 393-399.
Ishiyama H, Satoh T, Yorozu A et al. Multi-institutional retrospective analysis of learning curves on dosimetry and operation time before and after introduction of intraoperatively built custom-linked seeds in prostate brachytherapy. J Radiat Res 2016; 57: 68-74.
Inada M, Yokokawa M, Minami T et al. Dosimetry advantages of intraoperatively built custom-linked seeds compared with loose seeds in permanent prostate brachytherapy. J Contemp Brachytherapy 2017; 9: 410-417.
Taussky D, Igidbashian L, Donath D et al. Is intraoperative real-time dosimetry in prostate seed brachytherapy predictive of biochemical outcome? J Contemp Brachytherapy 2017; 9: 304-308.
Stone NN, Potters L, Davis BJ et al. Customized dose prescription for permanent prostate brachytherapy: insights from a multicenter analysis of dosimetry outcomes. Int J Radiat Oncol Biol Phys 2007; 69: 1472-1477.
Abel S, Renz P, Gayou O et al. Evaluation of intraoperative magnetic resonance imaging/ultrasound fusion optimization for low-dose-rate prostate brachytherapy. J Contemp Brachytherapy 2017; 9: 309-315.
Ohashi T, Yorozu A, Toya K et al. Comparison of intraoperative ultrasound with postimplant computed tomography – dosimetric values at Day 1 and Day 30 after prostate brachytherapy. Brachytherapy 2007; 6: 246-253.
Nath R, Bice WS, Butler WM et al. AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: report of Task Group 137. Med Phys 2009; 36: 5310-5322.
Ishiyama H, Satoh T, Kawakami S et al. A prospective quasi-randomized comparison of intraoperatively built custom-linked seeds versus loose seeds for prostate brachytherapy. Int J Radiat Oncol Biol Phys 2014; 90: 134-139.
Wang Y, Nasser NJ, Borg J et al. Evaluation of the dosimetric impact of loss and displacement of seeds in prostate low-dose-rate brachytherapy. J Contemp Brachytherapy 2015; 7: 203-210.
Miyazawa K, Matoba M, Minato H et al. Seed migration after transperineal interstitial prostate brachytherapy with I-125 free seeds: analysis of its incidence and risk factors. Jpn J Radiol 2012; 30: 635-641.
Miura N, Kusuhara Y, Numata K et al. Radiation pneumonitis caused by a migrated brachytherapy seed lodged in the lung. Jpn J Clin Oncol 2008; 38: 623-625.
Zhu AX, Wallner KE, Frivold GP et al. Prostate brachytherapy seed migration to the right coronary artery associated with an acute myocardial infarction. Brachytherapy 2006; 5: 262-265.
Chen WC, Katcher J, Nunez C et al. Radioactive seed migration after transperineal interstitial prostate brachytherapy and associated development of small-cell lung cancer. Brachytherapy 2012; 11: 354-358.
 
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe