eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
vol. 10
Original paper

Radiobiological doses, tumor, and treatment features influence on local control, enucleation rates, and survival after epiescleral brachytherapy. A 20-year retrospective analysis from a single-institution: part I

David Miguel, Jesus María Frutos-Baraja, Francisco López-Lara, María Antonia Saornil, Ciro García-Álvarez, Pilar Alonso, Patricia Diezhandino

J Contemp Brachytherapy 2018; 10, 4: 337–346
Online publish date: 2018/08/31
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
To assess influence of the radiobiological doses, tumor, and treatment features on local control, enucleation rates, overall and disease-specific survival rates after brachytherapy for posterior uveal melanoma.

Material and methods
Local control, enucleation, overall and disease-specific survival rates were evaluated on the base of 243 patients from 1996 through 2016, using plaques loaded with iodine sources. Clinical and radiotherapy data were extracted from a dedicated prospective database. Biologically effective dose (BED) was included in survival analysis using Kaplan-Meier and Cox regressions. The 3-, 5-, 10-, and 15-year relative survival rates were estimated, and univariate/multivariate regression models were constructed for predictive factors of each item. Hazard ratio (HR) and confidence interval at 95% (CI) were determined.

The median follow-up was 73.9 months (range, 3-202 months). Cumulative probabilities of survival by Kaplan-Meier analysis at 3, 5, 10 and 15 years were respectively: 96%, 94%, 93%, and 87%, for local control; 93%, 88%, 81%, and 73% for globe preservation; 98%, 93%, 84%, and 73% for overall survival, and 98%, 96%, 92%, and 87% for disease-specific survival. By multivariate analysis, we concluded variables as significant: for local control failure – the longest basal diameter and the juxtapapillary location; for globe preservation failure – the longest basal dimension, the mushroom shape, the location in ciliary body, and the dose to the foveola; for disease-specific survival – the longest basal dimension. Some radiobiological doses were significant in univariate models but not in multivariate ones for the items studied.

The results show as predictive factors of local control, enucleation, and disease-specific survival rates those related with the features of the tumor, specifically the longest basal dimension. There is no clear relation between radiobiological doses or treatment parameters in patients after brachytherapy.


brachytherapy, disease-specific survival, enucleation, local control, radiobiological doses, uveal melanoma

Virgili G, Gatta G, Ciccolallo L et al. Incidence of uveal melanoma in Europe. Ophthalmology 2007; 114: 2309-2315.
Shields JA, Shields CL, De Potter P. Approach to counseling patients with posterior uveal melanoma. Int Ophthalmol Clin 1993; 33: 143-145.
Gamel JW, McLean IW, McCurdy JB. Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma. Cancer 1993; 71: 2299-2305.
Kujala E, Mäkitie T, Kivelä T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 2003; 44: 4651-4659.
Diener-West M, Reynolds SM, Agugliaro DJ et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol 2005; 123: 1639-1643.
Rajpal S, Moore R, Karakousis CP. Survival in metastatic ocular melanoma. Cancer 1983; 52: 334-336.
Shields JA, Shields CL, Donoso LA. Management of posterior uveal melanoma. Surv Ophthalmol 1991; 36: 161-195.
Rao YJ, Sein J, Badiyan S et al. Patterns of care and survival outcomes after treatment for uveal melanoma in the
post-coms era (2004-2013): a surveillance, epidemiology, and end results analysis. J Contemp Brachytherapy 2017; 9: 453-465.
Diener-West M, Earle JD, Fine SL et al. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. COMS Report No. 18. Arch Ophthalmol 2001; 119: 969-982.
Nag S, Quivey JM, Earle JD et al. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys 2003; 56: 544-555.
American Brachytherapy Society – Ophthalmic Oncology Task Force; Simpson ER, Gallie B, Laperrierre N et al. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy 2014; 13: 1-14.
Caswell RS, Deluca P, Seltzer SM et al. ICRU Report No. 72: Dosimetry of Beta Rays and Low-Energy Photons for Brachytherapy with Sealed Sources. Vol. 4.; 2004.
Krohn J, Monge OR, Skorpen TN et al. Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation. Eye (Lond) 2008; 22: 1398-1403.
Seregard S, Kock E. Prognostic indicators following enucleation for posterior uveal melanoma. A multivariate analysis of long-term survival with minimized loss to follow-up. Acta Ophthalmol Scand 1995; 73: 340-344.
Fowler JF. 21 years of Biologically Effective Dose. Br J Radiol 2010; 83: 554-568.
Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62: 679-694.
Dale RG. Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides, with particular reference to iodine-125. Med Phys 1983; 10: 176-183.
Gagne NL, Leonard KL, Huber KE et al. BEDVH-A method for evaluating biologically effective dose volume histograms: application to eye plaque brachytherapy implants. Med Phys 2012; 39: 976-983.
Gagne NL, Leonard KL, Rivard MJ. Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function. Med Phys 2012; 39: 3332-3342.
Tagliaferri L, Pagliara MM, Boldrini L et al. INTERACTS (INTErventional Radiotherapy ACtive Teaching School) guidelines for quality assurance in choroidal melanoma interventional radiotherapy (brachytherapy) procedures. J Contemp Brachytherapy 2017; 9: 287-295.
Granero D, Pérez-Calatayud J, Ballester F et al. Dosimetric study of the 15 mm ROPES eye plaque. Med Phys 2004; 31: 3330-3336.
Chiu-Tsao ST, Astrahan MA, Finger PT et al. Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys 2012; 39: 6161-6184.
Gagne NL, Rivard MJ. Quantifying the dosimetric influences of radiation coverage and brachytherapy implant placement uncertainty on eye plaque size selection. Brachytherapy 2013; 12: 508-520.
Astrahan MA, Luxton G, Jozsef G et al. An interactive treatment planning system for ophthalmic plaque radiotherapy. Int J Radiat Oncol Biol Phys 1990; 18: 679-687.
Nath R, Anderson LL, Luxton G et al. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys 1995; 22: 209-234.
Rivard MJ, Coursey BM, DeWerd LA et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys 2004; 31: 633-674.
Dale RG, Jones B. The clinical radiobiology of brachytherapy. Br J Radiol 1998; 71: 465-483.
Verhoeff JJC, Stalpers LJA, Coumou AW et al. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice. Radiat Oncol 2007; 2: 38.
Roberts SA, Hendry JH, Swindell R et al. Compensation for changes in dose-rate in radical low-dose-rate brachytherapy : a radiobiological analysis of a randomised clinical trial. Radiother Oncol 2004; 70: 63-74.
Bland JM, Altman DG. Survival probabilities (the Kaplan- Meier method). BMJ 1998; 317: 1572-1580.
Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics 1995; 51: 524-532.
Jampol LM, Moy CS, Murray TG et al. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: IV. Local treatment failure and enucleation in the first 5 years after brachytherapy. COMS report no. 19. Ophthalmology 2002; 109: 2197-2206.
Miguel D, de Frutos-Baraja JM, López-Lara F et al. Visual outcome after posterior uveal melanoma episcleral brachytherapy including radiobiological doses. J Contemp Brachytherapy 2018; 10: 123-131.
Jensen AW, Petersen IA, Kline RW et al. Radiation complications and tumor control after 125I plaque brachytherapy for ocular melanoma. Int J Radiat Oncol Biol Phys 2005; 63: 101-108.
Perez BA, Mettu P, Vajzovic L et al. Uveal melanoma treated with iodine-125 episcleral plaque: An analysis of dose on disease control and visual outcomes. Int J Radiat Oncol Biol Phys 2014; 89: 127-136.
Correa R, Pera J, Gómez J et al. (125)I episcleral plaque brachytherapy in the treatment of choroidal melanoma: a single-institution experience in Spain. Brachytherapy 2009; 8: 290-296.
Damato B, Patel I, Campbell IR et al. Local tumor control after 106Ru brachytherapy of choroidal melanoma. Int J Radiat Oncol Biol Phys 2005; 63: 385-391.
Murray TG, Markoe AM, Gold AS et al. Long-term followup comparing two treatment dosing strategies of 125I plaque radiotherapy in the management of small/medium posterior uveal melanoma. J Ophthalmol 2013; 2013: 517032.
Gorovets D, Gagne NL, Melhus CS. Dosimetric and radiobiologic comparison of 103Pd COMS plaque brachytherapy and Gamma Knife radiosurgery for choroidal melanoma. Brachytherapy 2017; 16: 433-443.
Kaiserman I, Anteby I, Chowers I et al. Changes in ultrasound findings in posterior uveal melanoma after Ruthenium 106 brachytherapy. Ophthalmology 2002; 109: 1137-1141.
Chang MY, McCannel TA. Local treatment failure after globe- conserving therapy for choroidal melanoma. Br J Ophthalmol 2013; 97: 804-811.
Aziz HA, Singh N, Bena J et al. Vision Loss Following Episcleral Brachytherapy for Uveal Melanoma: Development of a Vision Prognostication Tool. JAMA Ophthalmol 2016; 134: 615-620.
Quivey JM, Char DH, Phillips TL et al. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys 1993; 26: 613-618.
Rospond-Kubiak I, Wróblewska-Zierhoffer M, Twardosz- Pawlik H. Ruthenium brachytherapy for uveal melanoma – single institution experience. J Contemp Brachytherapy 2017; 9: 548-552.
Verschueren KMS, Creutzberg CL, Schalij-Delfos NE et al. Long-term outcomes of eye-conserving treatment with Ruthenium106 brachytherapy for choroidal melanoma. Radiother Oncol 2010; 95: 332-338.
Gündüz K, Shields CL, Shields JA et al. Radiation complications and tumor control after plaque radiotherapy of choroidal melanoma with macular involvement. Am J Ophthalmol 1999; 127: 579-589.
Bergman L, Nilsson B, Lundell G et al. Ruthenium Bra­chy­therapy for Uveal Melanoma, 1979–2003 Survival and Functional Outcomes in the Swedish Population. Ophthalmology 2005; 112: 834-840.
Isager P, Ehlers N, Urbak SF et al. Visual outcome, local tumour control, and eye preservation after 106Ru/Rh brachytherapy for choroidal melanoma. Acta Oncol 2009; 45: 285-293.
Fili M, Lundell G, Lundell M et al. High dose rate and low dose rate ruthenium brachytherapy for uveal melanoma. No association with ocular outcome. Br J Ophthalmol 2014; 98: 1349-1354.
Petrovich Z, Luxton G, Langholz B et al. Episcleral plaque radiotherapy in the treatment of uveal melanomas. Int J Radiat Oncol Biol Phys 1992; 24: 247-251.
Shields CL, Kaliki S, Cohen MN et al. Prognosis of uveal melanoma based on race in 8100 patients: The 2015 Doyne Lecture. Eye (Lond) 2015; 29: 1027-1035.
McLean MJ, Foster WD, Zimmerman LE. Prognostic factors in small malignant melanomas of choroid and ciliary body. Arch Ophthalmol 1977; 95: 48-58.
Kaliki S, Shields CL, Shields JA. Uveal melanoma: estimating prognosis. Indian J Ophthalmol 2015; 63: 93-102.
Rich JT, Neely JG, Paniello RC et al. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010; 143: 331-336.
Ambler G, Seaman S, Omar RZ. An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 2012; 31: 1150-1161.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe