eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
4/2018
vol. 10
 
Share:
Share:
more
 
 
abstract:
Original paper

Radiobiological doses, tumor, and treatment features influence on outcomes after epiescleral brachytherapy. A 20-year retrospective analysis from a single-institution: part II

David Miguel, Jesús María de Frutos-Baraja, Francisco Lopez-Lara Martín, María Antonia Saornil, Ciro García-Alvarez, Pilar Alonso, Patricia Diezhandino

J Contemp Brachytherapy 2018; 10, 4: 347–359
Online publish date: 2018/08/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
To assess the influence of the radiobiological doses, tumor, and treatment features on retinopathy, cataracts, retinal detachment, optic neuropathy, vitreous hemorrhage, and neovascular glaucoma at the authors’ institution after brachytherapy for posterior uveal melanoma.

Material and methods
Medical records of 243 eyes with uveal melanoma, treated by iodine brachytherapy between 1996 and 2016 at a single center were analyzed. Clinical and radiotherapy data were extracted from a dedicated database. Biologically effective dose (BED) was included in survival analysis performed using Kaplan-Meier and Cox regressions. Relative survival rates were estimated, and univariate/multivariate regression models were constructed for predictive factors of each item. Hazard ratio and confidence interval at 95% were determined. Variables statistically significant were analyzed and compared by log-rank tests.

Results
The median follow-up was 73.9 months (range, 3-202 months). Cumulative probabilities of survival by Kaplan-Meier analysis at 3 and 5 years, respectively, were: 59% and 48% for retinopathy; 71% and 55% for cataracts; 63% and 57% for retinal detachment; 88% and 79% for optic neuropathy; 87% and 83% for vitreous hemorrhage; 92% and 89% for neovascular glaucoma, respectively. Using multivariate analysis, statistically significant risk factors were: age, tumor apical height, dose to foveola, and location of anterior border for retinopathy; age, dose to lens, type of plaque, and tumor shape, for cataracts; age, tumor apical height, and size of the plaque for retinal detachment; age, plaque shape, longest basal dimension, and BED to optic nerve for optic neuropathy; age, tumor apical height, and tumor shape for vitreous hemorrhage; tumor apical height and BED to foveola for neovascular glaucoma.

Conclusions
Tumor factors in addition to radiation treatment may contribute to secondary effects. Enhanced clinical optimization should evaluate radiobiological doses delivered to the tumor volume and surrounding normal ocular structures.

keywords:

brachytherapy, radiobiological doses, side effects, uveal melanoma

references:
Virgili G, Gatta G, Ciccolallo L et al. Incidence of uveal melanoma in Europe. Ophthalmology 2007; 114: 2309-2315.
Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011; 118: 1881-1885.
Shields JA, Shields CL, Donoso LA. Management of posterior uveal melanoma. Surv Ophthalmol 1991; 36: 161-195.
Rao YJ, Sein J, Badiyan S et al. Patterns of care and survival outcomes after treatment for uveal melanoma in the post-coms era (2004-2013): a surveillance, epidemiology, and end results analysis. J Contemp Brachytherapy 2017; 9: 453-465.
Shields JA, Shields CL. Management of posterior uveal melanoma: past, present, and future: the 2014 Charles L. Schepens lecture. Ophthalmology 2015; 122: 414-428.
Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton Lecture. Eye (Lond) 2012; 26: 1157-1172.
American Brachytherapy Society – Ophthalmic Oncology Task Force; Simpson ER, Gallie B, Laperrierre N et al. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy 2014; 13: 1-14.
Chiu-Tsao ST, Astrahan MA, Finger PT et al. Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys 2012; 39: 6161-6184.
Jensen AW, Petersen IA, Kline RW et al. Radiation complications and tumor control after 125I plaque brachytherapy for ocular melanoma. Int J Radiat Oncol Biol Phys 2005; 63: 101-108.
Brady LW, Shields J, Augusburger J et al. Complications from radiation therapy to the eye. Front Radiat Ther Oncol 1989; 23: 238-254.
Summanen P, Immonen I, Kivela T et al. Radiation related complications after ruthenium plaque radiotherapy of uveal melanoma. Br J Ophthalmol 1996; 80: 732-739.
Langmann A, Langmann G, Unlücerci C et al. Motility disorders in brachytherapy of choroid melanomas with Ru106 applicators. Ophthalmologe 1995; 92: 76-78 [Article in German].
Sener EC, Kiratli H, Gedik S et al. Ocular motility disturbances after episcleral plaque brachytherapy for uveal melanoma. J AAPOS 2004; 8: 38-45.
Tagliaferri L, Pagliara MM, Masciocchi C et al. Nomogram for predicting radiation maculopathy in patients treated with Ruthenium-106 plaque brachytherapy for uveal melanoma. J Contemp Brachytherapy 2017; 9: 540-547.
Rospond-Kubiak I, Wróblewska-Zierhoffer M, Twardosz- Pawlik H. Ruthenium brachytherapy for uveal melanoma – single institution experience. J Contemp Brachytherapy 2017; 9: 548-552.
Parsons JT, Bova FJ, Mendenhall WM et al. Response of the normal eye to high dose radiotherapy. Oncology (Willston Park) 1996; 10: 837-847.
Muller HJ. Artificial transmutation of the gene. Science 1927; 66: 84-87.
Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62: 679-694.
Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985; 58: 515-528.
Dale RG. Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides, with particular reference to iodine-125. Med Phys 1983; 10: 176-183.
Gagne NL, Leonard KL, Huber KE et al. BEDVH-A method for evaluating biologically effective dose volume histograms: application to eye plaque brachytherapy implants. Med Phys 2012; 39: 976-983.
Gagne NL, Leonard KL, Rivard MJ. Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function. Med Phys 2012; 39: 3332-3342.
Gagne NL, Cutright DR, Rivard MJ. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity. J Contemp Brachytherapy 2012; 4: 165-175.
Miguel D, de Frutos-Baraja JM, López-Lara F et al. Visual outcome after posterior uveal melanoma episcleral brachytherapy including radiobiological doses. J Contemp Brachytherapy 2018; 10: 123-131.
Miguel D, de Frutos-Baraja JM, López-Lara F et al. Radiobiological doses, tumor, and treatment features influence on local control, enucleation rates, and survival after epiescleral brachytherapy. A 20-year retrospective analysis from a single- institution: part I. J Contemp Brachytherapy 2018; 10: 337-346.
Brown GC, Shields JA, Sanborn G, et al. Radiation retinopathy. Ophthalmology 1982; 89: 1494-1501.
Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy – clinical, histopathological, ultrastructural and experimental correlations. Eye (Lond) 1991; 5 (Pt 2): 239-251.
Brown GC, Shields JA, Sanborn G et al. Radiation optic neuropathy. Ophthalmology 1982; 89: 1489-1493.
Gragoudas ES, Li W, Lane AM et al. Risk factors for radiation maculopathy and papillopathy after intraocular irradiation. Ophthalmology 1999; 106: 1571-1578.
Merriam GR, Focht EF. A clinical study of radiation cataracts and the relationship to dose. Am J Roentgenol Radium Ther Nucl Med 1957; 77: 759-785.
Stack R, Elder M, Abdelaal A, et al. New Zealand experience of I125 brachytherapy for choroidal melanoma. Clin Exp Ophthalmol 2005; 33: 490-494.
Petrovich Z, McDonnell JM, Palmer D et al. Histopathologic changes following irradiation for uveal tract melanoma. Am J Clin Oncol 1994; 17: 298-306.
Burris CKH, Rodriguez ME, Potter HD. Scleral Necrosis Simulating Recurrent Uveal Melanoma after Plaque Brachytherapy. Ophthalmology 2016; 123: 1761.
Bland JM, Altman DG. Survival probabilities (the Kaplan- Meier method). BMJ 1998; 317: 1572-1580.
Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics 1995; 51: 524-532.
Bursac Z, Gauss CH, Williams DK et al. Purposeful selection of variables in logistic regression. Source Code Biol Med 2008; 3: 17.
Benichou C, Danan G, Flahault A. Causality assessment of adverse reactions to drugs – II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 1993; 46: 1331-1336.
Danan G, Benichou C. Causality assessment of adverse reactions to drugs – I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993; 46: 1323-1330.
Rich JT, Neely JG, Paniello RC et al. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010; 143: 331-336.
Groenewald C, Konstantinidis L, Damato B. Effects of radiotherapy on uveal melanomas and adjacent tissues. Eye (Lond) 2013; 27: 163-171.
Wagner A, Chen A, Cook T et al. Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional Experience. ISRN Ophthalmol 2014; 2014: 1-7.
Krema H, Xu W, Payne D et al. Factors predictive of radiation retinopathy post 125Iodine brachytherapy for uveal melanoma. Can J Ophthalmol 2011; 46: 158-163.
De Potter P, Shields CL, Shields JA et al. Plaque radiotherapy for juxtapapillary choroidal melanoma. Visual acuity and survival outcome. Arch Ophthalmol 1996; 114: 1357-1365.
Finger PT. Tumour location affects the incidence of cataract and retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol 2000; 84: 1068-1070.
Gündüz K, Shields CL, Shields JA et al. Radiation retinopathy following plaque radiotherapy for posterior uveal melanoma. Arch Ophthalmol 1999; 117: 609-614.
McLean IW, Foster WD, Zimmerman LE. Uveal melanoma: location, size, cell type, and enucleation as risk factors in metastasis. Hum Pathol 1982; 13: 123-132.
Wen JC, Oliver SC, McCannel TA. Ocular complications following I-125 brachytherapy for choroidal melanoma. Eye (Lond) 2009; 23: 1254-1268.
Stewart FA, Akleyev AV, Hauer-Jensen M et al. ICRP publication 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context. Clement CH, ed. Ann ICRP 2012; 41: 1-322.
Cucinotta FA, Manuel FK, Jones J et al. Space radiation and cataracts in astronauts. Radiat Res 2001; 156 (5 Pt 1): 460-466.
Quivey JM, Char DH, Phillips TL et al. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys 1993; 26: 613-618.
Jampol LM, Moy CS, Murray TG et al. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: IV. Local treatment failure and enucleation in the first 5 years after brachytherapy. COMS report no. 19. Ophthalmology 2002; 109: 2197-2206.
Collaborative Ocular Melanoma Study Group. Incidence of cataract and outcomes after cataract surgery in the first 5 years after iodine 125 brachytherapy in the Collaborative Ocular Melanoma Study: COMS Report No. 27. Ophthalmology 2007; 114: 1363-1371.
Krohn J, Monge OR, Skorpen TN et al. Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation. Eye 2008; 22: 1398-1403.
Puusaari I, Heikkonen J, Kivelä T. Ocular complications after iodine brachytherapy for large uveal melanomas. Ophthalmology 2004; 111: 1768-1777.
Lumbroso-Le Rouic L, Charif Chefchaouni M, Levy C et al. 125I plaque brachytherapy for anterior uveal melanomas. Eye 2004; 18: 911-916.
Fontanesi J, Meyer D, Xu S et al. Treatment of choroidal melanoma with I-125 plaque. Int J Radiat Oncol Biol Phys 1993; 26: 619-623.
5Shields CL, Shields JA, Kiratli H et al. Risk factors for growth and metastasis of small choroidal melanocytic lesions. Ophthalmology 1995; 102: 259-279.
Gass JD. Observation of suspected choroidal and ciliary body melanomas for evidence of growth prior to enucleation. Ophthalmology 1980; 87: 523-528.
Jensen OA. Malignant melanomas of the human uvea: 25-year follow-up of cases in Denmark, 1943-1952. Acta Ophthalmol 1982; 60: 161-182.
Kivelä T, Eskelin S, Mäkitie T, et al. Exudative retinal detachment from malignant uveal melanoma: predictors and prognostic significance. Invest Ophthalmol Vis Sci 2001; 42: 2085-2093.
Puusaari I, Heikkonen J, Kivelä T. Effect of radiation dose on ocular complications after iodine brachytherapy for large uveal melanoma: Empirical data and simulation of collimating plaques. Investig Ophthalmol Vis Sci 2004; 45: 3425-3434.
Jiang GL, Tucker SL, Guttenberger R et al. Radiation-induced injury to the visual pathway. Radiother Oncol 1994; 30: 17-25.
Lommatzsch PK, Alberti W, Lommatzsch R et al. Radiation effects on the optic nerve observed after brachytherapy of choroidal melanomas with 106Ru/106Rh plaques. Graefe’s Arch Clin Exp Ophthalmol 1994; 232: 482-487.
Puusaari I, Heikkonen J, Summanen P et al. Iodine Bra­chy­therapy as an Alternative to Enucleation for Large Uveal Melanomas. Ophthalmology 2003; 110: 2223-2234.
Shields CL, Naseripour M, Cater J et al. Plaque Radiotherapy for Large Posterior Uveal Melanomas (> 8-mm thick) in 354 Consecutive Patients. Ophthalmology 2002; 109: 1838-1849.
Caminal JM, Padrón-Pérez N, Arias L et al. Transscleral resection without hypotensive anaesthesia vs iodine-125 plaque brachytherapy in the treatment of choroidal melanoma. Eye (Lond) 2016; 30: 833-842.
Kaliki S, Shields CL, Shields JA. Uveal melanoma: estimating prognosis. Indian J Ophthalmol 2015; 63: 93-102.
Fowler JF. 21 years of biologically effective dose. Br J Radiol 2010: 554-568.
Ambler G, Seaman S, Omar RZ. An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 2012; 31: 1150-1161.
 
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe