eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank

4/2018
vol. 43
 
Share:
Share:
more
 
 
abstract:
Review paper

Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases

Marina Arenas-Padilla, Veronica Mata-Haro

(Centr Eur J Immunol 2018; 43 (4): 482-489)
Online publish date: 2018/12/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
The control of the immune response during the development of some diseases is crucial for the maintenance or restoration of homeostasis. Several mechanisms can initiate inflammation, one of which is the activation of toll-like receptors (TLRs), necessary to initiate the immune response to eliminate an infection. However, inappropriate activation can compromise immunological homeostasis, leading to pathologies such as autoimmune diseases, chronic inflammation, and even cancer. Regulatory mechanisms that intervene in the initiation or modulation of inflammation include microRNAs (miRNAs), which have emerged as key post-transcriptional regulators of proteins involved in distinct cellular processes, such as regulation of the immune response. The focus of this review is on the diverse roles of miRNAs in the regulation of TLR-signaling pathways by targeting multiple molecules, including TLRs, the signaling proteins and cytokines induced by TLRs. It will also address the relationships of these molecules with some diseases that involve inflammation such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), cancer, as well as bacterial or viral infections.
keywords:

microRNA, inflammatory diseases, toll-like receptor, TLR signaling

references:
Newton K, Dixit VM (2012): Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4: pii: a006049.
Bartel DP (2009): MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.
Kawai T, Akira S (2010): The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373-384.
Huang QQ, Pope RM (2009): The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 11: 357-364.
Philippe L, Alsaleh G, Suffert G, et al. (2012): TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 188: 454-461.
Meng L, Zhu W, Jiang C, et al. (2010): Toll-like receptor 3 upregulation in macrophages participates in the initiation and maintenance of pristane-induced arthritis in rats. Arthritis Res Ther 12: R103.
Jiang C, Zhu W, Xu J, et al. (2014): MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res Ther 16: R9.
Aungier SR, Ohmori H, Clinton M, Mabbott NA (2015): MicroRN-100-5p indirectly modulates the expression of Il6, Ptgs1/2 and Tlr4 mRNA in the mouse follicular dendritic cell-like cell line, FL-Y. Immunology 144: 34-44.
Rupani H, Martinez-Nunez RT, Dennison P, et al. (2016): Toll-like receptor 7 is reduced in severe asthma and linked to an altered microRNA profile. Am J Respir Crit Care Med 194: 26-37.
Medzhitov R, Horng T (2009): Transcriptional control of the inflammatory response. Nat Rev Immunol 9: 692-703.
Tang B, Xiao B, Liu Z, et al. (2010): Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 584: 1481-1486.
Tili E, Michaille JJ, Cimino A, et al. (2007): Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF- stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082-5089.
Doxaki C, Kampranis SC, Eliopoulos AG, et al. (2015): Coordinated regulation of miR-155 and miR-146a Genes during induction of endotoxin tolerance in macrophages. J Immunol 195: 5750-5761.
Wei J, Huang X, Zhang Z, et al. (2013): MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol Immunol 55: 303-309.
Xu G, Zhang Z, Xing Y, et al. (2014): MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem 115: 919-927.
Ma C, Li Y, Li M, et al. (2014): MicroRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol 62: 150-158.
Cavalieri D, Rizzetto L, Tocci N, et al. (2016): Plant microRNAs as novel immunomodulatory agents. Sci Rep 6: 25761.
Chen Y, Chen J, Wang H, et al. (2013): HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9: e1003248.
Schulte LN, Westermann AJ, Vogel J (2013): Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41: 542-553.
Park H, Huang X, Lu C, et al. (2015): MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem 290: 2831-2841.
Taganov KD, Boldin MP, Chang KJ, Baltimore D, et al. (2006): NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481-12486.
Lu M, Zhang PJ, Li CH, et al. (2015): miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo. Sci Rep 5: 12608.
Xu G, Zhang Z, Wei J, et al. (2013): MicroR-142-3p down-regulates IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis (Edinb) 93: 606-611.
Zhou X, Li X, Ye Y, et al. (2014): MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 5: 3619.
Xu Y, Jin H, Yang X, et al. (2014): MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4. FEBS Lett 588: 1692-1698.
Ma H, Wang X, Ha T, et al. (2016): MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor kappaB activation and p53-mediated apoptotic signaling. J Infect Dis 214: 1773-1783.
Zhu S, Pan W, Song X, et al. (2012): The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 18: 1077-1086.
Xu Z, Dong D, Chen X, et al. (2015): MicroRNA-381 negatively regulates TLR4 signaling in A549 cells in response to LPS stimulation. Biomed Res Int 2015: 849475.
Zou M, Wang F, Jiang A, et al. (2017): MicroRNA-3178 ameliorates inflammation and gastric carcinogenesis promoted by Helicobacter pylori new toxin, Tip-, by targeting TRAF3. Helicobacter 22: e12348-n/a.
Fang Y, Chen H, Hu Y, et al. (2016): Burkholderia pseudomallei-derived miR-3473 enhances NF-kappaB via targeting TRAF3 and is associated with different inflammatory responses compared to Burkholderia thailandensis in murine macrophages. BMC Microbiol 16: 283.
Qi J, Qiao Y, Wang P, et al. (2012): MicroRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 586: 1201-1207.
Liu S, Kumar SM, Lu H, et al. (2012): MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol 226: 61-72.
Wan HY, Guo LM, Liu T, et al. (2010): Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 9: 16.
Zhao S, Yang G, Liu PN, et al. (2015): miR-590-3p Is a Novel MicroRNA in Myocarditis by Targeting Nuclear Factor Kappa-B in vivo. Cardiology 132: 182-188.
Shin VY, Jin H, Ng EK, et al. (2011): NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32: 240-245.
Garzon R, Pichiorri F, Palumbo T, et al. (2007): MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26: 4148-4157.
Zhao C, Zhao Q, Zhang C, et al. (2017): miR-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-B/XIAP axis. Sci Rep 7: 4194.
Wang XA, Zhang R, She ZG, et al. (2014): Interferon regulatory factor 3 constrains IKK/NF-B signaling to alleviate hepatic steatosis and insulin resistance. Hepatology 59: 870-885.
Tarassishin L, Loudig O, Bauman A, et al. (2011): Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59: 1911-1922.
Fitzgerald DC, O’Brien K, Young A, et al. (2014): Interferon regulatory factor (IRF) 3 is critical for the development of experimental autoimmune encephalomyelitis. J Neuroinflammation 11: 130.
Loubaki L, Chabot D, Paré I, et al. (2017): MiR-146a potentially promotes IVIg-mediated inhibition of TLR4 signaling in LPS-activated human monocytes. Immunol Lett 185: 64-73.
Gui S, Chen X, Zhang M, et al. (2015): Mir-302c mediates influenza A virus-induced IFN expression by targeting NF-B inducing kinase. FEBS Lett 589 (24 Pt B): 4112-4118.
Andreassen R, Woldemariam NT, Egeland IØ, et al. (2017): Identification of differentially expressed Atlantic salmon miRNAs responding to salmonid alphavirus (SAV) infection. BMC Genomics 18: 349.
Primo MN, Bak RO, Schibler B, Mikkelsen JG (2012): Regulation of pro-inflammatory cytokines TNFαlpha and IL24 by microRNA-203 in primary keratinocytes. Cytokine 60: 741-748.
Moffatt CE, Lamont RJ (2011): Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 79: 2632-2637.
Chen B, She S, Li D, et al. (2013): Role of miR-19a targeting TNF-αlpha in mediating ulcerative colitis. Scand J Gastroenterol 48: 815-824.
Johnson SM, Grosshans H, Shingara J, et al. (2005): RAS is regulated by the let-7 microRNA family. Cell 120: 635-647.
Takamizawa J, Konishi H, Yanagisawa K, et al. (2004): Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753-3756.
Kumar MS, Erkeland SJ, Pester RE, et al. (2008): Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci 105: 3903-3908.
Iliopoulos D, Hirsch HA, Struhl K (2009): An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139: 693-706.
Xu Z, Xiao SB, Xu P, et al. (2011): miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J Biol Chem 286: 21401-21412.
Zhang J, Jia J, Zhao L, et al. (2016): Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell. Mol Carcinog 55: 732-742.
Yang X, Liang L, Zhang XF, et al. (2013): MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58: 158-170.
Sharma A, Kumar M, Aich J, et al. (2009): Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci 106: 5761-5766.
Swaminathan S, Suzuki K, Seddiki N, et al. (2012): Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol 188: 6238-6246.
Liu Y, Chen Q, Song Y, et al. (2011): MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 585: 1963-1968
FEATURED PRODUCTS
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe