Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Central European Journal of Immunology
eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
1/2025
vol. 50
 
Share:
Share:
Original paper

Role of TLR2 rs5743708 and dectin-1 rs16910526 polymorphisms in susceptibility to fungal infections in COVID-19 patients

Karzan Abdulmuhsin Mohammad
1
,
Hero M. Ismael
1
,
Shukur Wasman Smail
1, 2
,
Taban Kamal Rasheed
1
,
Mohammed O. Rahman
3
,
Niaz Albarzinji
4
,
Rebaz Hamza Salih
5
,
Kalthum Othman Taha
1
,
Khawlah Salah Khaleel
1
,
Kawa Amin
6, 7
,
Christer Janson
6

  1. Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
  2. College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
  3. Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
  4. College of Medicine, Hawler Medical University, Erbil, Iraq
  5. PAR Private Hospital, Erbil, Kurdistan Region, Iraq
  6. Department of Medical Science, Respiratory, Allergy and Sleep Research, Uppsala University and University Hospital, Uppsala, Sweden
  7. College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
Cent Eur J Immunol 2025; 50 (1): 77-86
Online publish date: 2025/05/05
Article file
Get citation
 
PlumX metrics:
 
1. Huang TC, Liang KH, Chang TJ, et al. (2024): Structure-based approaches against COVID-19. J Chin Med Assoc 87: 139-141.
2. World Health Organization (2020): Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020.
3. WHO (2024): World Health Data Platform – WHO 2024. Available from: https://www.who.int/data.
4. Tuite NL, Lacey K (2013): Overview of invasive fungal infections. Methods Mol Biol 968: 1-23.
5. Hoenigl M, Seidel D, Sprute R, et al. (2022): COVID-19-associated fungal infections. Nat Microbiol 7: 1127-1140.
6. Chavda VP, Mishra T, Kamaraj S, et al. (2023): Post-COVID-19 fungal infection in the aged population. Vaccines (Basel) 11: 555.
7. Takeuchi O, Akira S (2010): Pattern recognition receptors and inflammation. Cell 140: 805-820.
8. Tsuboi H, Segawa S, Yagishita M, et al. (2022): Activation mechanisms of monocytes/macrophages in adult-onset Still disease. Front Immunol 13: 953730.
9. Tone K, Stappers MHT, Willment JA, Brown GD (2019): C-type lectin receptors of the Dectin-1 cluster: Physiological roles and involvement in disease. Eur J Immunol 49: 2127-2133.
10. Kalia N, Singh J, Kaur M (2021): The role of dectin-1 in health and disease. Immunobiology 226: 152071.
11. Goodridge HS, Simmons RM, Underhill DM (2007): Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178: 3107-3115.
12. Chiba S, Ikushima H, Ueki H, et al. (2014): Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife 3: e04177.
13. Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14(4):392-9.
14. Taylor PR, Tsoni SV, Willment JA, et al. (2007): Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8: 31-38.
15. Uno A, Arima K, Shimazaki M, et al. (2021): A novel -glucan-oligonucleotide complex selectively delivers siRNA to APCs via Dectin-1. J Control Release 338: 792-803.
16. Gringhuis SI, den Dunnen J, Litjens M, et al. (2009): Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10: 203-213.
17. Colleselli K, Ebeyer-Masotta M, Neuditschko B, et al. (2023): Beyond pattern recognition: TLR2 promotes chemotaxis, cell adhesion, and migration in THP-1 cells. Cells 12: 1425.
18. Chen SM, Zou Z, Qiu XR, et al. (2019): The critical role of Dectin-1 in host controlling systemic Candida krusei infection. Am J Transl Res 11: 721-732.
19. Li F, Wang H, Li YQ, et al. (2023): C-type lectin receptor 2d forms homodimers and heterodimers with TLR2 to negatively regulate IRF5-mediated antifungal immunity. Nat Commun 14: 6718.
20. Cunha C, Di Ianni M, Bozza S, et al. (2010): Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116: 5394-5402.
21. Fischer M, Spies-Weisshart B, Schrenk K, et al. (2016): Polymorphisms of dectin-1 and TLR2 predispose to invasive fungal disease in patients with acute myeloid leukemia. PLoS One 11: e0150632.
22. Żukowska A, Ciechanowicz A, Kaczmarczyk M, et al. (2023): Toll-like receptor polymorphisms (TLR2 and TLR4) association with the risk of infectious complications in cardiac surgery patients. Adv Clin Exp Med 32: 57-63.
23. van der Velden WJFM, Plantinga T, Feuth T, et al. (2009): No impact of dectin-1 polymorphism Y238X on the outcome of hematopoietic stem cell transplantation, but a role for candida in acute graft-versus-host disease. Blood 114: 4498.
24. Aghaei M, Khademi R, Far MAJ, et al. (2024): Genetic variants of dectin-1 and their antifungal immunity impact in hematologic malignancies: A comprehensive systematic review. Curr Res Transl Med 72: 103460.
25. Alhabibi AM, Hassan AS, Abd Elbaky NM, et al. (2023): Impact of toll-like receptor 2 and 9 gene polymorphisms on COVID-19: Susceptibility, severity, and thrombosis. J Inflamm Res 16: 665-675.
26. Bakaros E, Voulgaridi I, Paliatsa V, et al. (2023): Innate immune gene polymorphisms and COVID-19 prognosis. Viruses 15: 1784.
27. Elgedawy GA, Elabd NS, Salem RH, et al. (2024): FURIN, IFNL4, and TLR2 gene polymorphisms in relation to COVID-19 severity: a case-control study in Egyptian patients. Infection 52: 2213-2229.
28. Ten Oever J, Kox M, van de Veerdonk FL, et al. (2014): The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol 15: 55.
29. Kalia N, Kaur M, Sharma S, Singh J (2018): A comprehensive in silico analysis of regulatory SNPs of human CLEC7A gene and its validation as genotypic and phenotypic disease marker in recurrent vulvovaginal infections. Front Cell Infect Microbiol 8: 65.
30. Faul F, Erdfelder E, Lang AG, Buchner A (2007): G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175-191.
31. Cohen J (2013): Statistical power analysis for the behavioral sciences. Routledge.
32. WHO (2020): Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020.
33. Vianna JR, Pires Di Lorenzo VA, Simões MM, Jamami M (2017): Comparing the effects of two different levels of hyperoxygenation on gas exchange during open endotracheal suctioning: A randomized crossover study. Respir Care 62: 92-101.
34. Pitt JI, Hocking AD, Pitt JI, Hocking AD (1997): Methods for isolation, enumeration and identification. Fungi and Food Spoilage; 21-57.
35. Peng J, Wang Q, Mei H, et al. (2021): Fungal co-infection in COVID-19 patients: evidence from a systematic review and meta-analysis. Aging (Albany NY) 13: 7745-7757.
36. Jung HE, Lee HK (2021): Current understanding of the innate control of toll-like receptors in response to SARS-CoV-2 infection. Viruses 13: 2132.
37. Gonçalves SM, Pereira I, Feys S, et al. (2024): Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 15: e0198223.
38. Negm EM, Mohamed MS, Rabie RA, et al. (2023): Fungal infection profile in critically ill COVID-19 patients: a prospective study at a large teaching hospital in a middle-income country. BMC Infect Dis 23: 246.
39. Ferwerda B, Ferwerda G, Plantinga TS, et al. (2009): Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361: 1760-1767.
40. Zhou P, Xie Y, Yan Z, et al. (2019): Association between dectin-1 gene single nucleotide polymorphisms and fungal infection: a systemic review and meta-analysis. Biosci Rep 39: BSR20191519.
41. Plantinga TS, van der Velden WJ, Ferwerda B, et al. (2009): Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis 49: 724-732.
42. Sainz J, Lupiáñez CB, Segura-Catena J, et al. (2012): Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS One 7: e32273.
43. Kumar A, Wang J, Esterly A, et al. (2023): Dectin-1 stimulation promotes a distinct inflammatory signature in the setting of HIV-infection and aging. Aging (Albany NY) 15: 7866-7908.
Copyright: © 2025 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.