eISSN: 1689-3530
ISSN: 0867-4361
Alcoholism and Drug Addiction/Alkoholizm i Narkomania
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
3/2018
vol. 31
 
Share:
Share:
more
 
 
abstract:
Review article

The effect of  the  products of  ethanol metabolism on the  liver – a  review

Aleksandra Kołota

Alcohol Drug Addict 2018; 31 (3): 225-242
Online publish date: 2019/01/22
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
The consequences of consuming excessive amounts of alcoholic beverages are currently an important problem for many societies, not only in the context of treatment of alcohol dependence, but also the health effects of alcohol abuse. Long-term consumption of alcoholic beverages is associated with increased risk of hypertension, ischemic heart disease, also mouth and throat, stomach, liver or large intestine cancer. Due to almost 90% of consumed alcohol being broken down in the liver by oxidative pathways, this organ is particularly vulnerable to the effects of alcohol metabolism. The consequences of alcohol metabolism in the liver is the formation of byproducts, namely acetaldehyde and interaction between acetaldehyde and proteins, lipoproteins, DNA, also formation of reactive oxygen species and markers of inflammation, which can intensify immunological and inflammatory reactions and oxidative stress, thus contributing to the damage of hepatocytes, and development of alcoholic liver disease. There are three stages of alcoholic liver disease: alcoholic fatty liver disease, alcoholic hepatitis and alcoholic cirrhosis. The more advanced the disease, the worse the prognosis tends to be and the smaller the chance of recovery. Thus, alcoholic liver disease is a significant public health problem.
keywords:

Ethanol, Acetaldehyde, Adducts, Reactive oxygen species, Alcoholic liver disease

references:
Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010; 44: 15-26.
Li TK, Yin SJ, Crabb DW, O’Connor S, Ramchandani VA. Genetic and environmental influences on alcohol metabolism in humans. Alcohol Clin Exp Res 2001; 25: 136-44.
Rigamonti C, Mottaran E, Reale E, Rolla R, Cipriani V, Capelli F, et al. Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C. Hepatology 2003; 38: 42-9.
World Health Organization. WHO Global Status Report on Alcohol. Geneva; 2004.
Sesso HD, Cook NR, Buring JE, Manson JE, Gaziano JM. Alcohol consumption and the risk of hypertension in women and men. Hypertension 2008; 51: 1080-7.
Bagnardi V, Blangiardo M, La Vecchia C, Corrao G. A meta-analysis of alcohol drinking and cancer risk. Br J Cancer 2001; 85: 1700-5.
Zakhari S. Overview: How is alcohol metabolized by the body? Alcohol Res Health 2006; 29: 245-54.
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol 2014; 20: 17756-72.
Schwartz JM, Reinus JF. Prevalence and natural history of alcoholic liver disease. Clin Liver Dis 2012; 16: 659-66.
Wojtyniak B, Goryński P. Sytuacja zdrowotna ludności Polski i jej uwarunkowania. Warszawa: Na­rodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny; 2016.
Lieber CS. Metabolism of alcohol. Clin Liver Dis 2005; 9: 1-35.
Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 2010; 5: 121-8.
Caballería J. Current concepts in alcohol metabolism. Ann Hepatol 2003; 2: 60-8.
Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2004; 36: 511-29.
Paton A. Alcohol in the body. BMJ 2005; 330: 85-7.
Cylwik B, Chrostek L, Szmitkowski M. Nieoksydacyjne metabolity etanolu jako markery ostatniego picia alkoholu. Pol Merk Lek 2007; 23: 235-8.
Liu SQ, Pilone GJ. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 2000; 35: 49-61.
Lachenmeier DW, Sohnius EM. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol 2008; 46: 2903-11.
Quertemont E, Didone V. Role of acetaldehyde in mediating the pharmacological and behavioral effects of alcohol. Alcohol Res Health 2006; 29: 258-65.
Tambour S, Closon C, Tirelli E, Quertemont E. Effects of cyanamide and acetaldehyde accumulation on the locomotor stimulant and sedative effects of ethanol in mice. Behav Pharmacol 2007; 18: 777-84.
Quertemont E, Tambour S, Tirelli E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog Neurobiol 2005; 75: 247-74.
Setshedi M, Wands JR, Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev 2010; 3:178-85.
Tuma DJ, Casey CA. Dangerous byproducts of alcohol breakdown: Focus on adducts. Alcohol Res Health 2003; 27: 285-90.
Clot PE, Albano E, Eliasson M, Tabone M, Aricò S, Israel Y, et al. Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology 1996; 111: 206-16.
Niemelä O, Parkkila S, Pasanen M, Iimuro Y, Bradford B, Thurman RG. Early alcoholic liver injury: formation of protein adducts with acetaldehyde and lipid peroxidation products, and expression of CYP2E1 and CYP3A. Alcohol Clin Exp Res 1998; 22: 2118-24.
Niemelä O, Juvonen T, Parkkila S. Immunohistochemical demonstration of acetaldehyde-modified epitopes in human liver after alcohol consumption. J Clin Invest 1991; 87: 1367-74.
Niemelä O, Parkkila S, Ylä-Herttuala S, Halsted C, Witztum JL, Lanca A, et al. Covalent protein adducts in the liver as a result of ethanol metabolism and lipid peroxidation. Lab Invest 1994; 70: 537-46.
Romanazzi V, Schilirò T, Carraro E, Gilli G. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake. Environ Toxicol Pharmacol 2013; 36: 378-83.
Niemelä O, Israel Y. Hemoglobin-acetaldehyde adducts in human alcohol abusers. Lab Invest 1992; 67: 246-52.
Svegliati-Baroni G, Baraona E, Rosman AS, Lieber CS. Collagen-acetaldehyde adducts in alcoholic and nonalcoholic liver diseases. Hepatology 1994; 20: 111-8.
Latvala J, Melkko J, Parkkila S, Järvi K, Makkonen K, Niemelä O. Assays for acetaldehyde-derived adducts in blood proteins based on antibodies against acetaldehyde/lipoprotein condensates. Alcohol Clin Exp Res 2001; 25: 1648-53.
Niemelä O. Acetaldehyde adducts in circulation. Novartis Found Symp 2007; 285: 183-92, discussion 193-7.
Balbo S, Brooks PJ. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis. Adv Exp Med Biol 2015; 815: 71-88.
Seitz H, Becker P. Alcohol metabolism and cancer risk. Alcohol Res Health 2007; 30: 38-47.
Balbo S, Juanes RC, Khariwala S, Baker EJ, Daunais JB, Grant KA. Increased levels of the acetaldehyde-derived DNA adduct N 2-ethyldeoxyguanosine in oral mucosa DNA from Rhesus monkeys exposed to alcohol. Mutagenesis 2016; 31: 553-8.
Fang JL, Vaca CE. Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis 1997; 18: 627-32.
Brooks PJ, Theruvathu JA. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 2005; 35: 187-93.
Koop D. Alcohol metabolism’s damaging effects on the cell. A focus on reactive oxygen generation by the enzyme cytochrome P450 2E1. Alcohol Res Health 2006; 29: 274-80.
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 2006; 160: 1-40.
Wu D, Cederbaum A. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003; 27: 277-84.
Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta 2004; 1655: 400-8.
Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon 2012; 12: 160-7.
Finkel T. Redox-dependent signal transduction. FEBS Letters 2000; 476: 52-4.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84.
Williams M, Kwon J. T cell receptor stimulation, reactive oxygen species and cell signaling. Free Radic Biol Med 2004; 37: 1144-51.
Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 2002; 122: 2049-63.
Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 1999; 49: 91-102.
Hirano T. Alcohol consumption and oxidative DNA damage. Int J Environ Res Public Health 2011; 8: 2895-906.
Tahir M, Sultana S. Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol Alcohol 2011; 46: 383-92.
Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009; 83: 519-48.
Badger T, Ronis M, Seitz H, Albano E, Ingelman-Sundberg M, Lieber CS. Alcohol metabolism: role in toxicity and carcinogenesis. Alcohol Clin Exp Res, 2003; 27: 336-47.
Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic liver disease. Therap Adv Gastroenterol 2011; 4: 63-81.
Ravindra PS, Shashwat S, Suman K. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J Indian Acad Clin Med 2004; 5: 218-22.
Sakharov DV, Elstak EDR, Chenryak BV, Wirtz KW. Prolonged lipid oxidation after photodynamic treatment. Study with oxidation-sensitive probe C11-BODIPY581/591. FEBS Letters 2005; 579: 1255-60.
Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006; 25: 3365-74.
Moor ACE. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B 2000; 57: 1-13.
Jones DP. Radical-free biology of oxidative stress. Am J Physiol Lung Cell Mol Physiol 2008; 295: C849-68.
Bobba A, Atlante A, Petragallo VA, Marra E. Different sources of reactive oxygen species contribute to low potassium-induced apoptosis in cerebellar granule cells. Int J Mol Med 2008; 21: 737-45.
Balcerczyk A, Bartosz G. Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radic Res 2003; 37: 537-41.
Miller AM, Horiguchi N, Jeong WI, Radaeva S, Gao B. Molecular mechanisms of alcoholic liver disease: Innate immunity and cytokines. Alcohol Clin Exp Res 2011; 35: 787-93.
Völzke H. Multicausality in fatty liver disease: Is there a rationale to distinguish between alcoholic and non-alcoholic origin? World J Gastroenterol 2012; 18: 3492-501.
Gao B. Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol 2012; 27: 89-93.
Goral J, Karavitis J, Kovacs EJ. Exposure-dependent effects of ethanol on the innate immune system. Alcohol 2008; 42: 237-47.
Koivisto H, Hietala J, Anttila P, Parkkila S, Niemelä O. Long-term ethanol consumption and macrocytosis: diagnostic and pathogenic implications. J Lab Clin Med 2006; 147: 191-6.
Harrison-Findik DD, Schafer D, Klein E, Timchenko NA, Kulaksiz H, Clemens D, et al. Alcohol metabolism mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem 2006; 281: 22974-82.
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22: 50-71.
FEATURED PRODUCTS
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe