Biol Sport. 2026; 43: 115–125
1. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003; 21(7):519–528. doi: 10.1080 /0264041031000071182.
2.
Vestberg T, Gustafson R, Maurex L. Executive functions predict the success of top-soccer players. PLoS One. 2012; 7(4). doi: 10.1371/journal.pone .0034731.
3.
Bennett KJM, Novak AR, Pluss MA. Assessing the validity of a video-based decision-making assessment for talent identification in youth soccer. J Sci Med Sport. 2019; 22(6):729–734. doi: 10.1016/j.jsams.2018.12.011.
4.
Ellis M, Noon M, Myers T. Low doses of caffeine: Enhancement of physical performance in elite adolescent male soccer players. Int J Sports Physiol Perform. 2019; 14(5):569–575. doi: 10.1123/ijspp.2018-0536.
5.
Guest NS, VanDusseldorp TA, Nelson MT. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021; 18(1):1. doi: 10.1186/s12970 -020-00383-4.
6.
Karayigit R, Forbes SC, Osmanov Z. Low and moderate doses of caffeinated coffee improve repeated sprint performance in female team sport athletes. Biology (Basel). 2022; 11(10):1498. doi: 10.3390/biology11101498.
7.
Kaszuba M, Klocek O, Spieszny M. The effect of caffeinated chewing gum on volleyball-specific skills and physical performance in volleyball players. Nutrients. 2023; 15(1):91. doi: 10.3390/nu15010091.
8.
Dittrich N, Serpa MC, Lemos EC. Effects of caffeine chewing gum on exercise tolerance and neuromuscular responses in well-trained runners. J Strength Cond Res. 2021; 35(6):1671. doi: 10.1519 /JSC.0000000000002966.
9.
Davis JM, Zhao Z, Stock HS. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003; 284(2). doi: 10.1152/ajpregu .00386.2002.
10.
Tarnopolsky MA. Effect of caffeine on the neuromuscular system--potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008; 33(6):1284–1289. doi: 10.1139/H08-121.
11.
Gant N, Ali A, Foskett A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sport Nutr Exerc Metab. 2010; 20(3):191–197. doi: 10.1123/ijsnem .20.3.191.
12.
Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009; 39(10):813–832. doi: 10.2165 /11317770-000000000-00000.
13.
Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010; 24(1):257–265. doi: 10.1519 /JSC.0b013e3181c1f88a.
14.
Salvini S, Hunter DJ, Sampson L. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol. 1989; 18(4):858–867. doi: 10.1093/ije/18.4.858.
15.
Poole R, Kennedy OJ, Roderick P. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017; 359. doi: 10.1136/bmj .j5024.
16.
Farag MA, Hegazi NM, Donia MS. Molecular networking based LC/MS reveals novel biotransformation products of green coffee by ex vivo cultures of the human gut microbiome. Metabolomics. 2020; 16(8):86. doi: 10.1007 /s11306-020-01704-z.
17.
Machado F, Coimbra MA, Castillo MD. Mechanisms of action of coffee bioactive compounds – a key to unveil the coffee paradox. Crit Rev Food Sci Nutr. 2024; 64(28):10164–10186. doi: 10.1080 /10408398.2023.2 221734.
18.
Asnicar F, Berry SE, Valdes AM. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021; 27(2):321–332. doi: 10.1038/s41591-020-01183-8.
19.
González S, Salazar N, Ruiz-Saavedra S. Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients. 2020; 12(5):1287. doi: 10.3390/nu 12051287.
20.
Nishitsuji K, Watanabe S, Xiao J. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep. 2018; 8(1):16173. doi: 10.1038/s41598-018-34571-9.
21.
Dai A, Hoffman K, Xu AA. The association between caffeine intake and the colonic mucosa-associated gut microbiota in humans-a preliminary investigation. Nutrients. 2023; 15(7):1747. doi: 10.3390/nu 15071747.
22.
Cunningham JB, McCrum-Gardner E. Power, effect and sample size using GPower: practical issues for researchers and members of research ethics committees. Evid Based Midwifery. 2007; 5(4):132–137.
23.
Bolyen E, Rideout JR, Dillon MR, et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 2018; 6.
24.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17:10.
25.
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13:581–583.
26.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30:3059–3066.
27.
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009; 26:1641–1650.
28.
Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013; 22:5271–5277.
29.
Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984; 11:265–270.
30.
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 27:379–423.
31.
Simpson EH. Measurement of diversity. Nature. 1949; 163:688.
32.
Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992; 61:1–10.
33.
Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966; 13:131–144.
34.
Good IJ. The population frequency of species and the estimation of the population parameters. Biometrics. 1958; 40:237–246.
35.
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007; 73:1576–1585.
36.
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005; 71:8228–8235.
37.
Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018; 6:90.
38.
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007; 62:142–160.
39.
Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009; 9:12.
40.
Breiman L. Random forests. Mach Learn. 2001; 45:5–32.
41.
Rosseel Y. lavaan: an R package for structural equation modeling. J Stat Softw. 2012; 48:1–36.
42.
Epskamp S. semPlot: unified visualizations of structural equation models. Struct Equ Modeling. 2015; 22(3):474–483.
43.
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013; 8(4).
44.
Oksanen J, Kindt R, Legendre P, et al. The vegan package. Community Ecology Package. 2007; 10:719.
45.
Santana Pereira S, de São José V, da Silva A, et al. Can physical exercise modify intestinal integrity and gut microbiota composition? A systematic review of in vivo studies. Biol Sport. 2025; 42(4):13–28. doi: 10.5114 /biolsport.2025.148545.
46.
Petri C, Mascherini G, Izzicupo P, et al. Gut microbiota and physical activity level: characterization from sedentary to soccer players. Biol Sport. 2024; 41(3):169–176. doi: 10.5114 /biolsport.2024.134759.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.