eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

Interview with Professor Janusz Skowronek
ABS 2015
1/2018
vol. 10
 
Share:
Share:
more
 
 
abstract:
Original paper

Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer

Wojciech Burchardt, Janusz Skowronek

J Contemp Brachytherapy 2018; 10, 1: 1–9
Online publish date: 2018/02/26
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
To investigate the differences in prostate-specific antigen (PSA) bounce (PB) after high-dose-rate (HDR-BT) or low-dose-rate (LDR-BT) brachytherapy alone in prostate cancer patients.

Material and methods
Ninety-four patients with localized prostate cancer (T1-T2cN0), age ranged 50-81 years, were treated with brachytherapy alone between 2008 and 2010. Patients were diagnosed with adenocarcinoma, Gleason score ≤ 7. The LDR-BT total dose was 144-145 Gy, in HDR-BT – 3 fractions of 10.5 or 15 Gy. The initial PSA level (iPSA) was assessed before treatment, then PSA was rated every 3 months over the first 2 years, and every 6 months during the next 3 years. Median follow-up was 3.0 years.

Results
Mean iPSA was 7.8 ng/ml. In 58 cases, PSA decreased gradually without PB or biochemical failure (BF). In 24% of patients, PB was observed. In 23 cases (24%), PB was observed using 0.2 ng/ml definition; in 10 cases (11%), BF was diagnosed using nadir + 2 ng/ml definition. The HDR-BT and LDR-BT techniques were not associated with higher level of PB (26 vs. 22%, p = 0.497). Time to the first PSA rise finished with PB was significantly shorter after HDR-BT then after LDR-BT (median, 10.5 vs. 18.0 months) during follow-up. Predictors for PB were observed only after HDR-BT. Androgen deprivation therapy (ADT) and higher Gleason score decreased the risk of PB (HR = 0.11, p = 0.03; HR = 0.51, p = 0.01). The higher PSA nadir and longer time to PSA nadir increased the risk of PB (HR 3.46, p = 0.02; HR 1.04, p = 0.04). There was no predictors for PB after LDR-BT.

Conclusions
HDR-BT and LDR-BT for low and intermediate risk prostate cancer had similar PB rate. The PB occurred earlier after HDR-BT than after LDR-BT. ADT and higher Gleason score decreased, and higher PSA nadir and longer time to PSA nadir increased the risk of PB after HDR-BT.

keywords:

bounce, brachytherapy, HDR, LDR, monotherapy, prostate cancer, PSA

references:
Chin J, Rumble RB, Kollmeier M et al. Brachytherapy for Patients with Prostate Cancer: American Society of Clinical Oncology/Cancer Care Ontario Joint Guideline Update. J Clin Oncol 2017; 35: 1737-1743.
Davis BJ, Horwitz EM, Lee WR et al. American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy. Brachytherapy 2012; 11: 6-19.
Kovacs G, Potter R, Loch T et al. GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol 2005; 74: 137-148.
Skowronek J. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer - between options. J Contemp Brachytherapy 2013; 5: 33-41.
Yamada Y, Rogers L, Demanes DJ et al. American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy. Brachytherapy 2012; 11: 20-32.
Roach M 3rd, Hanks G, Thames H, Jr. et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006; 65: 965-974.
Crook J, Gillan C, Yeung I et al. PSA kinetics and PSA bounce following permanent seed prostate brachytherapy. Int J Radiat Oncol Biol Phys 2007; 69: 426-433.
Patel C, Elshaikh MA, Angermeier K et al. PSA bounce predicts early success in patients with permanent iodine-125 prostate implant. Urology 2004; 63: 110-113.
Wallner KE, Blasko J, Dattoli MJ. Evaluating cancer status. Prostate brachytherapy made complicated. Smart Medicine Press; Seattle 1997.
Crouzet S, Rebillard X, Chevallier D et al. Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur Urol 2010; 58: 559-566.
Caloglu M, Ciezki J. Prostate-specific antigen bounce after prostate brachytherapy: review of a confusing phenomenon. Urology 2009; 74: 1183-1190.
Hinnen KA, Monninkhof EM, Battermann JJ et al. Prostate specific antigen bounce is related to overall survival in prostate brachytherapy. Int J Radiat Oncol Biol Phys 2012; 82: 883-888.
Mazeron R, Bajard A, Montbarbon X et al. Permanent 125I-seed prostate brachytherapy: early prostate specific antigen value as a predictor of PSA bounce occurrence. Radiat Oncol 2012; 7:46.
Zwahlen DR, Smith R, Andrianopoulos N et al. Prostate-specific antigen bounce after permanent iodine-125 prostate brachytherapy – an Australian analysis. Int J Radiat Oncol Biol Phys 2011; 79: 179-187.
McGrath SD, Antonucci JV, Fitch DL et al. PSA bounce after prostate brachytherapy with or without neoadjuvant androgen deprivation. Brachytherapy 2010; 9: 137-144.
Mehta NH, Kamrava M, Wang PC et al. Prostate-specific antigen bounce after high-dose-rate monotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2013; 86: 729-733.
Merrick GS, Butler WM, Wallner KE et al. Prostate-specific antigen (PSA) velocity and benign prostate hypertrophy predict for PSA spikes following prostate brachytherapy. Brachytherapy 2003; 2: 181-188.
Ciezki JP, Reddy CA, Garcia J et al. PSA kinetics after prostate brachytherapy: PSA bounce phenomenon and its implications for PSA doubling time. Int J Radiat Oncol Biol Phys 2006; 64: 512-517.
Joiner M, Van der Kogel A. Basic Clinical Radiobiology. 4th ed. Hodder Education, 2009.
Brenner DJ, Martinez AA, Edmundson GK et al. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002; 52: 6-13.
Dale RG. Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model. Br J Radiol 1989; 62: 241-244.
Bernstein MB, Ohri N, Hodge JW et al. Prostate-specific antigen bounce predicts for a favorable prognosis following brachytherapy: a meta-analysis. J Contemp Brachytherapy 2013; 5: 210-214.
Critz FA, Williams WH, Levinson AK et al. Prostate specific antigen bounce after simultaneous irradiation for prostate cancer: the relationship to patient age. J Urol 2003; 170: 1864-1867.
Merrick GS, Butler WM, Wallner KE et al. Prostate-specific antigen spikes after permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 2002; 54: 450-456.
Toledano A, Chauveinc L, Flam T et al. PSA bounce after permanent implant prostate brachytherapy may mimic a biochemical failure: a study of 295 patients with a minimum 3-year follow up. Brachytherapy 2006; 5: 122-126.
Stock RG, Stone NN, Cesaretti JA. Prostate-specific antigen bounce after prostate seed implantation for localized prostate cancer: descriptions and implications. Int J Radiat Oncol Biol Phys 2003; 56: 448-453.
Das P, Chen MH, Valentine K et al. Using the magnitude of PSA bounce after MRI-guided prostate brachytherapy to distinguish recurrence, benign precipitating factors, and idiopathic bounce. Int J Radiat Oncol Biol Phys 2002; 54: 698-702.
Pickles T. Prostate-specific antigen (PSA) bounce and other fluctuations: which biochemical relapse definition is least prone to PSA false calls? An analysis of 2,030 men treated for prostate cancer with external beam or brachytherapy with or without adjuvant androgen deprivation therapy. Int J Radiat Oncol Biol Phys 2006; 64: 1355-1359.
Hackett C, Ghosh S, Sloboda R et al. Distinguishing prostate- specific antigen bounces from biochemical failure after low-dose-rate prostate brachytherapy. J Contemp Brachytherapy 2014; 6: 247-253.
Thompson A, Keyes M, Pickles T et al. Evaluating the Phoenix definition of biochemical failure after (125) I prostate brachytherapy: Can PSA kinetics distinguish PSA failures from PSA bounces? Int J Radiat Oncol Biol Phys 2010; 78: 415-421.
Aaltomaa SH, Kataja VV, Lahtinen T et al. Eight years’ experience of local prostate cancer treatment with permanent I125 seed brachytherapy – morbidity and outcome results. Radiother Oncol 2009; 91: 213-216.
Bostancic C, Merrick GS, Butler WM et al. Isotope and patient age predict for PSA spikes after permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 2007; 68: 1431-1437.
Horwitz EM, Levy LB, Thames HD et al. Biochemical and clinical significance of the posttreatment prostate-specific antigen bounce for prostate cancer patients treated with external beam radiation therapy alone: a multi-institutional pooled analysis. Cancer 2006; 107: 1496-1502.
 
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe