eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
4/2018
vol. 56
 
Share:
Share:
more
 
 
abstract:
Original paper

A comparison of the spatial patterns of β-amyloid (Aβ) deposits in five neurodegenerative disorders

Richard A. Armstrong

Folia Neuropathol 2018; 56 (4): 284-292
Online publish date: 2018/12/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Alzheimer’s disease neuropathologic change (ADNC) in the form of -amyloid (A) deposits is important not only in the pathogenesis of Alzheimer’s disease (AD) and Down’s syndrome (DS) but also as a ‘co-pathology’ in disorders such as dementia with Lewy bodies (DLB), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). To compare cortical and hippocampal degeneration in different disorders, the spatial patterns of the diffuse, primi­tive, and classic A deposits were studied in regions of frontal and temporal cortex in five neurodegenerative disorders, viz. AD, DS, DLB, CBD, and CTE using spatial pattern analysis. In all disorders, the A deposits were clustered and in a proportion of brain regions, the clusters were regularly distributed parallel to the tissue boundary. Cluster dimensions in the cortex, measured parallel to the pia mater, were frequently in the range 400-800 m suggesting a spatial association with the cortico-cortical pathways. Differences were also observed among disorders, the diffuse A deposits being more frequently distributed in regular clusters in AD while cluster sizes of the diffuse and primitive deposits were significantly smaller in CTE. The data suggest considerable similarities in the spatial patterns of A deposits in different disorders, regardless of the clinical or pathological setting, which suggests that the spread of A via neuro-anatomical pathways may be common to several disorders.
keywords:

Alzheimer’s disease neuropathologic change (ADNC), -amyloid (A), pathogenic spread

references:
Armstrong RA. Quantifying the pathology of neurodegenerative disorders: quantitative measurements, sampling strategies and data analysis. Histopathology 2003; 42: 521-529.
Armstrong RA. Methods of studying the planar distribution of objects in histological sections of brain tissue. J Microsc (Oxf) 2006; 221: 153-158.
Armstrong RA. A spatial pattern analysis of -amyloid (A) deposition in the temporal lobe in Alzheimer’s disease. Folia Neuropathol 2010; 48: 67-74.
Armstrong RA. Evidence from spatial pattern analysis for the anatomical spread of -synuclein pathology in Parkinson’s disease dementia. Folia Neuropathol 2017; 55: 23-30.
Armstrong RA, Cairns NJ, Lantos PL. Dementia with Lewy bodies: clustering of Lewy bodies in human patients. Neurosci Lett 1997; 224: 41-44.
Armstrong RA, Cairns NJ, Lantos PL. Beta-amyloid deposition in the temporal lobe of patients with dementia with Lewy bodies: Comparison with non-demented cases and Alzheimer’s disease. Dement Geriatr Cogn Disord 2000; 11: 187-192.
Armstrong RA, Lantos PL, Cairns NJ. The spatial patterns of prion protein deposits in Creutzfeldt-Jacob disease: comparison with -amyloid deposits in Alzheimer’s disease. Neurosci Lett 2001; 298: 53-56.
Armstrong RA, Ellis W, Hamilton RL, Mackenzie IRA, Hedreen J, Gearing M, Montine T, Vonsattel J-P, Head E, Lieberman AP, Cairns NJ. Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm 2010; 117: 227-239.
Armstrong RA, McKee AC, Stein TD, Alvarez VE, Cairns NJ. A quantitative study of tau pathology in 11 cases of chronic traumatic encephalopathy. Neuropathol Appl Neurobiol 2016; 43: 154-166.
Beekes M, McBride, PA, Baldauf E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 1998; 79: 601-607.
Beekes M, McBride PA. Early accumulation of pathological prion protein in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci Lett 2000; 278: 181-184.
Beekes M, Thomzig A, Schultz-Schaeffer W, Burger R. Is there a risk of prion-like transmission by Alzheimer- or Parkinson associated protein particles? Acta Neuropathol 2014; 128: 463-476.
Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
Braak H, Braak E. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 1992; 15: 6-31.
Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol 1993; 33: 403-408.
De Lacoste M, White CL. The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiol Aging 1993; 14: 1-16.
Delaere P, Duyckaerts C, He Y, Piette F, Hauw JJ. Subtypes and differential laminar distribution of /A4 deposits in Alzheimer’s disease: Relationship with the intellectual status of 26 cases. Acta Neuropathol 1991; 81: 328-335.
Geddes J, Vowles G, Nicoll J, Revesz T. Neuronal cytoskeletal changes are an early consequence of repetitive brain injury. Acta Neuropathol 1999; 98: 171-178.
Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122: 1131-1135.
Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33: 317-325.
Greenberg BD. The COOH-terminus of the Alzheimer amyloid A peptide: Differences in length influence the process of amyloid deposition in Alzheimer brain, and tell us something about relationships among parenchymal and vessel-asssociated amyloid deposits. Amyloid 1995; 21: 195-203.
Hamilton RL, Bouser R. Alzheimer’s disease pathology in amyotrophic lateral sclerosis. Acta Neuropathol 2004; 107: 515-522.
Hiorns RW, Neal JW, Pearson RCA, Powell TPS. Clustering of ipsilateral cortico-cortical projection neurons to area 7 in the rhesus monkey. Proc Roy Soc (Lond) 1991; 246: 1-9.
Holmes BB, Devos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotzbauer PT, Miller TM, Papy-Garcia D, Diamond MI. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci USA 2013; 110: E3138-E3147.
Huse JT, Doms RW. Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer’s disease. Mole Neuro­biol 2000; 22: 81-98.
Hyman BT, West HL, Rebeck GW, Buldyrev RN, Mantegna M, Ukleja M, Harlin S, Stanley HE. Quantitative analysis of senile plaques in Alzheimer’s disease: observation of log-normal size distributions associated with apolipoprotein E genotype and trisomy 21 (Down’s syndrome). Proc Natl Acad Sci USA 1995; 92: 3586-3590.
Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8: 1-13.
Jordan BD. The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neural 2013; 9: 222-230.
Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Ann Rev Neurosci 2001; 24: 1121-1159.
Mann DMA, Esiri MM. The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 1989; 89: 169-179.
McKee AC, Stein TD, Kieman PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015; 25: 350-364.
McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl D, Stein TD, Vonsattel JP, Stewart W, Tripodis Y, Crary JF, Bienick KF, Dams-O’Connor K, Alverez VF, Gordon WA, the TBI/CTE group. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016; 131: 75-86.
McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen ENH, Ballard C, de Vos RAI, Wilcock GK, Jellinger KA, Perry RH. Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology 1996; 47: 1113-1124.
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L. The consortium to establish a registry of the neuropathological assessment of Alzheimer’s disease (CERAD). II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 1991; 41: 479-486.
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT. National Institute on Aging; Alzheimer’s Association. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012; 23: 1-11.
Motte J, Williams RS. Age-related changes in the density and morphology of plaques and neurofibrillary tangles in Down syndrome brain. Acta Neuropathol 1989; 77: 535-546.
Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci USA 1985; 82: 4531-4534.
Schneider JA, Watts RL, Gearing M, Brewer RP, Mirra SS. Corticobasal degeneration: neuropathology and clinical heterogeneity. Neurology 1997; 48: 959-969.
Selkoe DJ. Deciphering Alzheimer’s disease: the amyloid precursor protein yields further new clues. Science 1990; 248: 1058-1060.
Spargo E, Luthert PJ, Anderton BH, Bruce M, Smith D, Lantos PL. Antibodies raised against different proteins of A4 protein identify a subset of plaques in Down’s syndrome. Neurosci Lett 1990; 115: 345-350.
Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous -synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998; 251: 205-208.
Stein TD, Montenigro PH, Alvarez VE, Xia W, Crary JF, Tripodis Y, Daneshvar DH, Mez J, Soloman T, Meng G, Kubilus CA, Cormier KA, Meng KA, Babcock K, Kiernan P, Murphy L, Nowiski CK, Martin B, Dixon D, Stern RA, Cantu RC, Kowall NW, McKee AC. Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol 2015; 130: 21-34.
Steiner JA, Angot E, Brunden P. A deadly spread: cellular mechanisms of -synuclein transfer. Cell Death Differ 2011; 18: 1425-1433.
Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P. The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 1988; 38: 359-364.
Wisniewski KE, Wisniewski HM, Wen GY. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 1985; 17: 278-282.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe