eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

5/2021
vol. 13
 
Share:
Share:
more
 
 
abstract:
Original paper

A machine-learning approach based on 409 treatments to predict optimal number of iodine-125 seeds in low-dose-rate prostate brachytherapy

Nicolas Boussion
1, 2
,
Ulrike Schick
1, 2
,
Gurvan Dissaux
1, 2
,
Luc Ollivier
2
,
Gaëlle Goasduff
2
,
Olivier Pradier
1, 2
,
Antoine Valeri
1, 3, 4
,
Dimitris Visvikis
1

1.
LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
2.
Radiation Oncology Department, CHU, Brest, France
3.
Urology Department, CHU, Brest, France
4.
CeRePP, Paris, France
J Contemp Brachytherapy 2021; 13, 5: 541–548
Online publish date: 2021/10/07
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Introduction
Low-dose-rate brachytherapy is a key treatment for low-risk or favorable intermediate-risk prostate cancer. The number of radioactive seeds inserted during the procedure depends on prostate volume, and is not easy to predict without pre-planning. Consequently, a large number of unused seeds may be left after treatment. The objective of the present study was to predict the exact number of seeds for future patients using machine learning and a database of 409 treatments.

Material and methods
Database consisted of 18 dosimetric and efficiency parameters for each of 409 cases. Nine predictive algorithms based on machine-learning were compared in this database, which was divided into training group (80%) and test group (20%). Ten-fold cross-validation was applied to obtain robust statistics. The best algorithm was then used to build an abacus able to predict number of implanted seeds from expected prostate volume only. As an evaluation, the abacus was also applied on an independent series of 38 consecutive patients.

Results
The best coefficients of determination R2 were given by support vector regression, with values attaining 0.928, 0.948, and 0.968 for training set, test set, and whole set, respectively. In terms of predicted seeds in test group, mean square error, median absolute error, mean absolute error, and maximum error were 2.55, 0.92, 1.21, and 7.29, respectively. The use of obtained abacus in 38 additional patients resulted in saving of 493 seeds (393 vs. 886 remaining seeds).

Conclusions
Machine-learning-based abacus proposed in this study aims at estimating the necessary number of seeds for future patients according to past experience. This new abacus, based on 409 treatments and successfully tested in 38 new patients, is a good alternative to non-specific recommendations.

keywords:

low-dose-rate brachytherapy, prostate cancer, radioactive seeds, machine-learning

 
Quick links
© 2021 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.