Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Review paper

Aging reimagined: Bridging clinical modulation and scientific breakthroughs

Salah Mhamdi
1, 2
,
Karim Chamari
3, 4
,
Ahmed S. BaHammam
5, 6
,
Walid Ahmed Alkeridy
7, 8, 9
,
Abdulrahman Ahmed Aldeeri
6, 7
,
Helmi Ben Saad
10, 11

  1. University of Sousse, Faculty of Medicine ‘Ibn el Jazzar’ of Sousse, Sahloul University Hospital, Department of Anesthesia and Intensive Care, Sousse, Tunisia
  2. Anesthesia department, King Khalid Hospital, Najran, Kingdom of Saudi Arabia
  3. Naufar Center, Doha, Qatar
  4. Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba, Tunisia
  5. University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
  6. King Saud University Medical City (KSUMC), King Saud University, Riyadh, Saudi Arabia
  7. Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
  8. Department of Medicine, Division of Geriatric Medicine, University of British Columbia, Vancouver, BC, Canada
  9. General Administration of Home Health Care, Therapeutic Affairs Deputyship, Riyadh, Saudi Arabia
  10. University of Sousse, Faculty of Medicine ‘Ibn el Jazzar’ of Sousse, Farhat HACHED University Hospital, Research Laboratory LR12SP09 ‘Heart Failure’ Sousse, Tunisia
  11. Department of Physiology and Functional Explorations, Farhat HACHED University Hospital, Sousse, Tunisia
Biol Sport. 2026;43:617–630
Online publish date: 2025/11/24
Article file
- 44_05209_Article_c.pdf  [0.34 MB]
Get citation
 
PlumX metrics:
 
1. Ghanemi A, Yoshioka M, St-Amand J. Exercise, diet and sleeping as regenerative medicine adjuvants: obesity and ageing as illustrations. Medicines (Basel). 2022; 9(1). Epub 20220114. doi: 10.3390/ medicines9010007. PubMed PMID: 35049940; PubMed Central PMCID: PMC8778846.
2. Levy JH, Shaw JR, Castellucci LA, Connors JM, Douketis J, Lindhoff-Last E, et al. Reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost. 2024; 22(10):2889–99. Epub 20240717. doi: 10.1016 /j.jtha.2024.07.009. PubMed PMID: 39029742.
3. Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, et al. Sarcopenia and muscle aging: A brief overview. Endocrinol Metab (Seoul). 2020; 35(4):716–32. Epub 20201223. doi: 10.3803/EnM.2020.405. PubMed PMID: 33397034; PubMed Central PMCID: PMC7803599.
4. Sinclair D, LaPlante M. Lifespan: Why we age—and why we don’t have to. New York: Atria Books; 2019.
5. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020; 588(7836):124–9. Epub 20201202. doi: 10.1038 /s41586-020-2975-4. PubMed PMID: 33268865; PubMed Central PMCID: PMC7752134.
6. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019; 18(6):e13028. Epub 20190908. doi: 10.1111/acel.13028. PubMed PMID: 31496122; PubMed Central PMCID: PMC6826138.
7. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol (Lausanne). 2021; 12:718942. Epub 20210805. doi: 10.3389/fendo.2021.718942. PubMed PMID: 34421827; PubMed Central PMCID: PMC8374068.
8. Moqri M, Herzog C, Poganik JR, Biomarkers of Aging C, Justice J, Belsky DW, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. 2023; 186(18):3758–75. doi: 10.1016/j. cell.2023.08.003. PubMed PMID: 37657418; PubMed Central PMCID: PMC11088934.
9. Garmany A, Terzic A. Global healthspan-lifespan gaps among 183 world health organization member states. JAMA Netw Open. 2024; 7(12):e2450241. Epub 20241202. doi: 10.1001 /jamanetworkopen.2024.50241. PubMed PMID: 39661386; PubMed Central PMCID: PMC11635540.
10. World health organization. Ageing and health. 2024. Link: https://www.who .int/news-room/fact-sheets/detail/ageing -and-health (Last visit: October 1, 2025).
11. Zurbuchen R, von Daniken A, Janka H, von Wolff M, Stute P. Methods for the assessment of biological age – A systematic review. Maturitas. 2025; 195:108215. Epub 20250207. doi: 10.1016/j.maturitas.2025 .108215. PubMed PMID: 39938306.
12. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andres V. Biological Versus Chronological Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020; 75(8):919–30. doi: 10.1016 /j.jacc.2019.11.062. PubMed PMID: 32130928.
13. Richa R, Sinha RP. Hydroxymethylation of DNA: An epigenetic marker. EXCLI J. 2014; 13:592–610. Epub 20140527. PubMed PMID: 26417286; PubMed Central PMCID: PMC4464262.
14. Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev. 2022; 81:101743. Epub 20221004. doi: 10.1016/j.arr.2022.101743. PubMed PMID: 36206857.
15. Varela E, Blasco MA. 2009 nobel prize in physiology or medicine: telomeres and telomerase. Oncogene. 2010; 29(11):1561–5. doi: 10.1038 /onc.2010.15. PubMed PMID: 20237481.
16. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4):663–76. Epub 20060810. doi: 10.1016 /j.cell.2006.07.024. PubMed PMID: 16904174.
17. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023; 186(2):243–78. Epub 20230103. doi: 10.1016/j.cell .2022.11.001. PubMed PMID: 36599349.
18. Tartiere AG, Freije JMP, Lopez-Otin C. The hallmarks of aging as a conceptual framework for health and longevity research. Front Aging. 2024; 5:1334261. Epub 20240115. doi: 10.3389/fragi.2024.1334261. PubMed PMID: 38292053; PubMed Central PMCID: PMC10824251.
19. Butler R, Lewis M. Aging & mental health. New York: New American Library; 1983. 383 p.
20. Nobel Prize in Physiology or Medicine 2009. 2009. Link: https://www.nobel prize.org/prizes/medicine/2009/summary / (Last visit: October 1, 2025).
21. Liu J, Wang L, Wang Z, Liu JP. Roles of telomere biology in cell senescence, replicative and chronological ageing. Cells. 2019; 8(1). Epub 20190115. doi: 10.3390/cells8010054. PubMed PMID: 30650660; PubMed Central PMCID: PMC6356700.
22. Shim HS, Iaconelli J, Shang X, Li J, Lan ZD, Jiang S, et al. TERT activation targets DNA methylation and multiple aging hallmarks. Cell. 2024; 187(15):4030–42 e13. Epub 20240621. doi: 10.1016 /j.cell.2024.05.048. PubMed PMID: 38908367; PubMed Central PMCID: PMC11552617.
23. Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024; 15(1):90. Epub 20240126. doi: 10.1038/s41419-024-06454-7. PubMed PMID: 38278800; PubMed Central PMCID: PMC10817947.
24. Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, et al. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol. 2023; 11:1286683. Epub 20231115. doi: 10.3389/fcell.2023.1286683. PubMed PMID: 38033865; PubMed Central PMCID: PMC10684755.
25. Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer. 2022; 8(10):855–69. Epub 20220622. doi: 10.1016/j.trecan.2022.05.005. PubMed PMID: 35750630.
26. Nobel Prize in Physiology or Medicine 2012. 2012. Link: https://www .nobelprize.org/prizes/medicine/2012 /summary/ (Last visit: October 1, 2025).
27. Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, et al. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 2023; 8(1):116. Epub 20230314. doi: 10.1038/s41392-023-01343-5. PubMed PMID: 36918530; PubMed Central PMCID: PMC10015098.
28. Yucel AD, Gladyshev VN. The long and winding road of reprogramming-induced rejuvenation. Nat Commun. 2024; 15(1):1941. Epub 20240302. doi: 10.1038/s41467-024-46020-5. PubMed PMID: 38431638; PubMed Central PMCID: PMC10908844.
29. Nobel Prize in Physiology or Medicine 2016. 2016. Link: https://www. nobelprize.org/prizes/medicine/2016 /press-release/ (Last visit: October 1, 2025).
30. Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology. 2023; 24(5):609–62. Epub 20230730. doi: 10.1007 /s10522-023-10050-1. PubMed PMID: 37516673.
31. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147(4):728–41. doi: 10.1016/j.cell.2011.10.026. PubMed PMID: 22078875.
32. Ghosh Chowdhury S, Ray R, Karmakar P. Relating aging and autophagy: a new perspective towards the welfare of human health. EXCLI J. 2023; 22:732–48. Epub 20230731. doi: 10.17179/excli2023-6300. PubMed PMID: 37662706; PubMed Central PMCID: PMC10471842.
33. Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. Nat Aging. 2023; 3(6):642–60. Epub 20230504. doi: 10.1038/s43587-023-00416-y. PubMed PMID: 37142830; PubMed Central PMCID: PMC10330278.
34. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017; 169(2):361–71. doi: 10.1016/j.cell.2017.03.035. PubMed PMID: 28388417.
35. Cruzado JM. Nonimmunosuppressive effects of mammalian target of rapamycin inhibitors. Transplant Rev (Orlando). 2008; 22(1):73–81. doi: 10.1016/j.trre.2007.09.003. PubMed PMID: 18631860.
36. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes. 2010; 59(6):1338–48. Epub 20100318. doi: 10.2337/db09-1324. PubMed PMID: 20299475; PubMed Central PMCID: PMC2874694.
37. Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, et al. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res. 2002; 43(8):1170–80. PubMed PMID: 12177161.
38. Teutonico A, Schena PF, Di Paolo S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005; 16(10):3128–35. Epub 20050817. doi: 10.1681/ASN.2005050487. PubMed PMID: 16107580.
39. Yang SB, Lee HY, Young DM, Tien AC, Rowson-Baldwin A, Shu YY, et al. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J Mol Med (Berl). 2012;90(5):575-85. doi:10.1007/s00109-011-0834-3. PubMed PMID: 22105852
40. Folkersen L. Folkersen, L. 2024. Bryan Johnson’s Blueprint project: One man’s contribution to longevity science. 2024. Link: https://mynucleus.com/blog /bryan-johnson-blueprint (Last visit: October 1, 2025).
41. Garcia CA, Wu S. Attributable risk of infection to mTOR Inhibitors everolimus and temsirolimus in the treatment of cancer. Cancer Invest. 2016; 34(10):521–530. doi: 10.1080/073 57907.2016.1242009. Epub 2016 Oct 28. PMID: 27791402.
42. Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell. 2016; 15(2):196–207. Epub 20151208. doi: 10.1111/acel.12427. PubMed PMID: 26643314; PubMed Central PMCID: PMC4783344.
43. Du S, Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci. 2021; 11(1):188. Epub 20211102. doi: 10.1186/s13578-021-00700-7. PubMed PMID: 34727995; PubMed Central PMCID: PMC8561869.
44. Saxena S, Anand SK, Sharma A, Kakkar P. Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine. Toxicol In Vitro. 2024; 100:105916. Epub 20240808. doi: 10.1016 /j.tiv.2024.105916. PubMed PMID: 39127087.
45. Song J, Jiang G, Zhang J, Guo J, Li Z, Hao K, et al. Metformin prolongs lifespan through remodeling the energy distribution strategy in silkworm, Bombyx mori. Aging (Albany NY). 2019; 11(1):240–8. doi: 10.18632 /aging.101746. PubMed PMID: 30636724; PubMed Central PMCID: PMC6339796.
46. Xiang L, Nakamura Y, Lim YM, Yamasaki Y, Kurokawa-Nose Y, Maruyama W, et al. Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging (Albany NY). 2011; 3(11):1098–109. doi: 10.18632 /aging.100396. PubMed PMID: 22156377; PubMed Central PMCID: PMC3249455.
47. Panthiya L, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin mitigates angiotensin II-induced proliferation, migration, and inflammation in vascular smooth muscle cells. EXCLI J. 2023; 22:466–81. Epub 20230605. doi: 10.17179/excli2023-6124. PubMed PMID: 37534221; PubMed Central PMCID: PMC10391613.
48. Fahy G. Age reversal & thymus rejuvenation TRIIM-X 2024 update | Dr Greg Fahy Full Interview. 2025. Link: https://www.youtube.com /watch?v=WcHBlK0otjE (Last visit: October 1, 2025).
49. Fahy, GM. Thymus regeneration, immunorestoration, and insulin mitigation extension Trial. 2020. Link: https://clinicaltrials.gov/study /NCT04375657 (Last visit: October 1, 2025).
50. Zhao L, Cao J, Hu K, He X, Yun D, Tong T, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020; 11(4):927–45. Epub 20200723. doi: 10.14336/AD.2019.0820. PubMed PMID: 32765955; PubMed Central PMCID: PMC7390530.
51. Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI J. 2024; 23:1030–67. Epub 20240827. doi: 10.17179 /excli2024-7519. PubMed PMID: 39391060; PubMed Central PMCID: PMC11464868.
52. Chamari K, Ahmaidi S, Ayoub J, Merzouk A, Laparidis C, Choquet D, et al. Effects of aging on cardiorespiratory responses to brief and intense intermittent exercise in endurance-trained athletes. J Gerontol A Biol Sci Med Sci. 2000; 55(11):B537–44. doi: 10.1093 /gerona/55.11.b537. PubMed PMID: 11078087.
53. Chamari K, Ahmaidi S, Fabre C, Ramonatxo M, Prefaut C. Pulmonary gas exchange and ventilatory responses to brief intense intermittent exercise in young trained and untrained adults. Eur J Appl Physiol Occup Physiol. 1995; 70(5):442–50. doi: 10.1007 /BF00618496. PubMed PMID: 7671880.
54. Huang W, Lai D, Zeng M, Chen B, Ye S, Li F, et al. Association of leisure-time aerobic physical activity time with apparent treatment-resistant hypertension: a study based on NHANES database. Biol Sport. 2025; 42(4):3–12. doi: 10.5114 /biolsport.2025.148543.
55. Ren K, Tao Y, Wang M. Association between physical activity, weight – adjusted waist index, and all – cause mortality in Chinese older adults: A national community – based cohort study. Biol Sport. 2025; 42(4):323–31. doi: 10.5114 /biolsport.2025.151659.
56. Salazar J, Navarro C, Ortega A, Nava M, Morillo D, Torres W, et al. Advanced glycation end products: New clinical and molecular perspectives. Int J Environ Res Public Health. 2021; 18(14). Epub 20210706. doi: 10.3390/ ijerph18147236. PubMed PMID: 34299683; PubMed Central PMCID: PMC8306599.
57. Pezzuto JM. Resveratrol: Twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019; 27(1):1–14. doi: 10.4062 /biomolther.2018.176. PubMed PMID: 30332889; PubMed Central PMCID: PMC6319551.
58. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009; 74(6):619–24. Epub 20091020. doi: 10.1111/j.1747-0285.2009 .00901.x. PubMed PMID: 19843076.
59. Sinclair DA. David Sinclair and the resveratrol controversy – A path forward. 2025. Link: https://www. youtube.com/watch?v=eBxw6_8PivA (Last visit: October 1, 2025).
60. Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother. 2021; 143:112164. Epub 20211002. doi: 10.1016 /j.biopha.2021.112164. PubMed PMID: 34649335.
61. Topol E. Super agers: An evidence based approch to longivity: Simon & Schuster; 2025.
62. Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the hallmarks of aging. nutrients. 2024; 16(4). Epub 20240209. doi: 10.3390 /nu16040496. PubMed PMID: 38398820; PubMed Central PMCID: PMC10892939.
63. Zhuang Z, Huang S, Xiong Y, Peng Y, Cai S. Association of magnesium depletion score with serum anti-aging protein Klotho in the middle-aged and older populations. Front Nutr. 2025; 12:1518268. Epub 20250327. doi: 10.3389/fnut.2025.1518268. PubMed PMID: 40212717; PubMed Central PMCID: PMC11984463.
64. Stancu AL. AMPK activation can delay aging. Discoveries (Craiova). 2015; 3(4):e53. Epub 20151231. doi: 10.15190/d.2015.45. PubMed PMID: 32309575; PubMed Central PMCID: PMC6941559.
65. Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 2023; 290(5):1362–83. Epub 20220201. doi: 10.1111/febs.16350. PubMed PMID: 35015337.
66. Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest. 2022; 132(15). doi: 10.1172 /JCI158450. PubMed PMID: 35912854; PubMed Central PMCID: PMC9337830.
67. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018; 14(10):576–90. doi: 10.1038/s41574-018-0059-4. PubMed PMID: 30046148.
68. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017; 8:1960. Epub 20180110. doi: 10.3389/fimmu.2017.01960. PubMed PMID: 29375577; PubMed Central PMCID: PMC5767595.
69. Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov. 2025; 24(4):300–15. Epub 20250128. doi: 10.1038/s41573 -024-01126-9. PubMed PMID: 39875569.
70. Bradley CE, Fletcher E, Wilkinson T, Ring A, Ferrer L, Miserlis D, et al. Mitochondrial fatty acid beta-oxidation: a possible therapeutic target for skeletal muscle lipotoxicity in peripheral artery disease myopathy. EXCLI J. 2024; 23:523–33. Epub 20240423. doi: 10.17179/excli2024-7004. PubMed PMID: 38741727; PubMed Central PMCID: PMC11089102.
71. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14(10):R115. doi: 10.1186/gb-2013-14-10-r115. PubMed PMID: 24138928; PubMed Central PMCID: PMC4015143.
72. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017; 542(7640):177–85. doi: 10.1038 /nature21363. PubMed PMID: 28179656.
73. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012; 61(6):1315–22. doi: 10.2337/db11-1300. PubMed PMID: 22618766; PubMed Central PMCID: PMC3357299.
74. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014; 17(4):324–8. doi: 10.1097 /MCO.0000000000000065. PubMed PMID: 24848532.
75. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 2011; 13(1):11–22. doi: 10.1016 /j.cmet.2010.12.008. PubMed PMID: 21195345; PubMed Central PMCID: PMC3040418.
76. Youm YH, Kanneganti TD, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A, et al. The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep. 2012; 1(1):56–68. Epub 20120126. doi: 10.1016 /j.celrep.2011.11.005. PubMed PMID: 22832107; PubMed Central PMCID: PMC3883512.
77. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018; 24(8):1246–56. Epub 20180709. doi: 10.1038/s41591 -018-0092-9. PubMed PMID: 29988130; PubMed Central PMCID: PMC6082705.
78. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013; 493(7432):338–45. doi: 10.1038/nature11861. PubMed PMID: 23325216; PubMed Central PMCID: PMC3687363.
79. Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics. 2024; 16(3):175-88. Epub 20231222. doi: 10.2217 /epi-2023-0298. PubMed PMID: 38131149; PubMed Central PMCID: PMC10841041.
80. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007; 87(3):873–904. doi: 10.1152 /physrev.00041.2006. PubMed PMID: 17615391.
81. Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, et al. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging. Front Immunol. 2022; 13:796288. Epub 20220407. doi: 10.3389/fimmu.2022.796288. PubMed PMID: 35464431; PubMed Central PMCID: PMC9021448.
82. Noetel M, Sanders T, Gallardo-Gomez D, Taylor P, Del Pozo Cruz B, van den Hoek D, et al. Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2024; 384:e075847. Epub 20240214. doi: 10.1136/bmj-2023- 075847. PubMed PMID: 38355154; PubMed Central PMCID: PMC10870815.
83. Dhahbi W, Briki W, Heissel A, Schega L, Dergaa I, Guelmami N, et al. Physical activity to counter age-related cognitive decline: Benefits of aerobic, resistance, and combined training-A narrative review. Sports Med Open. 2025; 11(1):56. Epub 20250517. doi: 10.1186/s40798-025-00857-2. PubMed PMID: 40381170; PubMed Central PMCID: PMC12085549.
84. Kakehi S, Wakabayashi H, Inuma H, Inose T, Shioya M, Aoyama Y, et al. Rehabilitation nutrition and exercise therapy for sarcopenia. World J Mens Health. 2022; 40(1):1–10. Epub 20210304. doi: 10.5534/wjmh .200190. PubMed PMID: 33831974; PubMed Central PMCID: PMC8761238.
85. Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016; 7(5):512–4. Epub 20161017. doi: 10.1002 /jcsm.12147. PubMed PMID: 27891296; PubMed Central PMCID: PMC5114626.
86. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018; 52(6):376–84. Epub 20170711. doi: 10.1136/bjsports-2017-097608. PubMed PMID: 28698222; PubMed Central PMCID: PMC5867436.
87. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990; 263(22):3029–34. PubMed PMID: 2342214.
88. Fiatarone MA, O’Neill EF, Doyle N, Clements KM, Roberts SB, Kehayias JJ, et al. The Boston FICSIT study: the effects of resistance training and nutritional supplementation on physical frailty in the oldest old. J Am Geriatr Soc. 1993; 41(3):333–7. doi: 10.1111/j.1532-5415.1993. tb06714.x. PubMed PMID: 8440860.
89. Waldinger R, Schulz M. The good life: lessons from the world’s longest scientific study of happiness. New York: Simon & Schuster; 2023.
90. BaHammam A, Pandi-Perumal SR. Interfacing sleep and aging. Front Neurol. 2010; 1:132. Epub 20101112. doi: 10.3389 /fneur.2010.000132. PubMed PMID: 21173896; PubMed Central PMCID: PMC2995619.
91. Foley D, Ancoli-Israel S, Britz P, Walsh J. Sleep disturbances and chronic disease in older adults: results of the 2003 National Sleep Foundation Sleep in America Survey. J Psychosom Res. 2004; 56(5):497–502. doi: 10.1016/j.jpsychores .2004.02.010. PubMed PMID: 15172205.
92. Vitiello MV, Moe KE, Prinz PN. Sleep complaints cosegregate with illness in older adults: clinical research informed by and informing epidemiological studies of sleep. J Psychosom Res. 2002; 53(1):555–9. doi: 10.1016 /s0022-3999(02)00435-x. PubMed PMID: 12127171.
93. Paudel ML, Taylor BC, Ancoli-Israel S, Blackwell T, Stone KL, Tranah G, et al. Rest/activity rhythms and mortality rates in older men: MrOS Sleep Study. Chronobiol Int. 2010; 27(2):363–77. doi: 10.3109/07420520903419157. PubMed PMID: 20370475; PubMed Central PMCID: PMC2918381.
94. Dew MA, Hoch CC, Buysse DJ, Monk TH, Begley AE, Houck PR, et al. Healthy older adults’ sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosom Med. 2003; 65(1):63–73. doi: 10.1097/01. psy.0000039756.23250.7c. PubMed PMID: 12554816.
95. Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res. 2018; 65(4):e12525. Epub 20181012. doi: 10.1111/jpi.12525. PubMed PMID: 30242884.
96. Pinilla L, Santamaria-Martos F, Benitez ID, Zapater A, Targa A, Mediano O, et al. Association of obstructive sleep apnea with the aging process. Ann Am Thorac Soc. 2021; 18(9):1540–7. doi: 10.1513 /AnnalsATS.202007-771OC. PubMed PMID: 33662230.
97. Zhong HH, Yu B, Luo D, Yang LY, Zhang J, Jiang SS, et al. Roles of aging in sleep. Neurosci Biobehav Rev. 2019; 98:177–84. Epub 20190112. doi: 10.1016/j.neubiorev .2019.01.013. PubMed PMID: 30648559.
98. Triana AM, Salmi J, Hayward N, Saramaki J, Glerean E. Longitudinal single-subject neuroimaging study reveals effects of daily environmental, physiological, and lifestyle factors on functional brain connectivity. PLoS Biol. 2024; 22(10):e3002797. Epub 20241008. doi: 10.1371/journal .pbio.3002797. PubMed PMID: 39378200; PubMed Central PMCID: PMC11460715.
99. Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017; 127(2):437–46. Epub 20170201. doi: 10.1172/JCI90328. PubMed PMID: 28145903; PubMed Central PMCID: PMC5272178.
100. Dang Y, Ling S, Ma J, Ni R, Xu JW. Bavachalcone enhances RORalpha expression, controls Bmal1 circadian transcription, and depresses cellular senescence in human endothelial cells. Evid Based Complement Alternat Med. 2015; 2015:920431. Epub 20150623. doi: 10.1155/2015/920 431. PubMed PMID: 26199639; PubMed Central PMCID: PMC4493309.
101. Streuli CH, Meng QJ. Influence of the extracellular matrix on cell-intrinsic circadian clocks. J Cell Sci. 2019; 132(3). Epub 20190201. doi: 10.1242/jcs.207498. PubMed PMID: 30709969.
102. Martin Gimenez VM, de Las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases. Front Aging Neurosci. 2022; 14:888292. Epub 20220603. doi: 10.3389/fnagi.2022 .888292. PubMed PMID: 35721030; PubMed Central PMCID: PMC9204094.
103. Pandi-Perumal SR, BaHammam AS, Ojike NI, Akinseye OA, Kendzerska T, Buttoo K, et al. Melatonin and human cardiovascular disease. J Cardiovasc Pharmacol Ther. 2017; 22(2):122–32. Epub 20160727. doi: 10.1177 /1074248416660622. PubMed PMID: 27450357.
104. Cardinali DP. Melatonin and healthy aging. Vitam Horm. 2021; 115:67–88. Epub 20210205. doi: 10.1016/bs.vh .2020.12.004. PubMed PMID: 33706965.
105. Melhuish Beaupre LM, Brown GM, Goncalves VF, Kennedy JL. Melatonin’s neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders. Transl Psychiatry. 2021; 11(1):339. Epub 20210602. doi: 10.1038 /s41398-021-01464-x. PubMed PMID: 34078880; PubMed Central PMCID: PMC8172874.
106. Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI J. 2017; 16:340-53. Epub 20170323. doi: 10.17179 /excli2016-852. PubMed PMID: 28507478; PubMed Central PMCID: PMC5427465.
107. Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J. 2018; 17:634–46. Epub 20180702. doi: 10.17179 /excli2017-654. PubMed PMID: 30108467; PubMed Central PMCID: PMC6088215.
108. Cong L, Liu X, Bai Y, Qin Q, Zhao L, Shi Y, et al. Melatonin alleviates pyroptosis by regulating the SIRT3 /FOXO3alpha/ROS axis and interacting with apoptosis in Atherosclerosis progression. Biol Res. 2023; 56(1):62. Epub 20231202. doi: 10.1186 /s40659-023-00479-6. PubMed PMID: 38041171; PubMed Central PMCID: PMC10693060.
109. Mendes L, Queiroz M, Sena CM. Melatonin and vascular function. Antioxidants (Basel). 2024; 13(6). Epub 20240620. doi: 10.3390/ antiox13060747. PubMed PMID: 38929187; PubMed Central PMCID: PMC11200504.
110. Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU. Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab. 2001; 86(10):4727–30. doi: 10.1210 /jcem.86.10.7901. PubMed PMID: 11600532.
111. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med. 2013; 45(3):343–6. doi: 10.1016/j.amepre.2013.04.011. PubMed PMID: 23953362.
112. Martel J, Chang SH, Chevalier G, Ojcius DM, Young JD. Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomed J. 2023; 46(1):48–59. Epub 20230119. doi: 10.1016/j.bj.2023.01.003. PubMed PMID: 36681118; PubMed Central PMCID: PMC10105029.
113. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020; 53:101340. Epub 20200513. doi: 10.1016/j.smrv.2020.101340. PubMed PMID: 32668369.
114. Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev. 2014; 40:80–101. Epub 20140124. doi: 10.1016 /j.neubiorev.2014.01.007. PubMed PMID: 24468109.
115. Luke J. Fluoride deposition in the aged human pineal gland. Caries Res. 2001; 35(2):125–8. doi: 10.1159 /000047443. PubMed PMID: 11275672.
116. Malin AJ, Bose S, Busgang SA, Gennings C, Thorpy M, Wright RO, et al. Fluoride exposure and sleep patterns among older adolescents in the United States: a cross-sectional study of NHANES 2015–2016. Environ Health. 2019; 18(1):106. Epub 20191209. doi: 10.1186/s12940 -019-0546-7. PubMed PMID: 31818308; PubMed Central PMCID: PMC6902325.
117. Nakamoto T, Rawls HR. Fluoride exposure in early life as the possible root cause of disease in later life. J Clin Pediatr Dent. 2018; 42(5):325–30. Epub 20180515. doi: 10.17796/1053-4625-42.5.1. PubMed PMID: 29763350.
118. Wright KP, Jr., McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 2013; 23(16):1554-8. Epub 20130801. doi: 10.1016 /j.cub.2013.06.039. PubMed PMID: 23910656; PubMed Central PMCID: PMC4020279.
119. Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutr Res. 2012; 32(5):309–19. Epub 20120425. doi: 10.1016 /j.nutres.2012.03.009. PubMed PMID: 22652369.
120. Sutanto CN, Loh WW, Kim JE. The impact of tryptophan supplementation on sleep quality: a systematic review, meta-analysis, and meta-regression. Nutr Rev. 2022; 80(2):306–16. doi: 10.1093/nutrit/nuab027. PubMed PMID: 33942088.
121. Park HJ, Lee GR, Kim Y, Kim J, Sohn M, Kim SH, et al. A randomized, double-blind, placebo-controlled study on the improvement of sleep quality with Earthing mat. Advances in Integrative Medicine. 2025; 12(3). doi: ARTN 100458 10.1016/j. aimed.2025.01.005. PubMed PMID: WOS:001522026500009.
122. Lack LC, Gradisar M, Van Someren EJ, Wright HR, Lushington K. The relationship between insomnia and body temperatures. Sleep Med Rev. 2008; 12(4):307–17. doi: 10.1016 /j.smrv.2008.02.003. PubMed PMID: 18603220.
123. Alnawwar MA, Alraddadi MI, Algethmi RA, Salem GA, Salem MA, Alharbi AA. The effect of physical activity on sleep quality and sleep disorder: A systematic review. Cureus. 2023; 15(8):e43595. Epub 20230816. doi: 10.7759/cureus.43595. PubMed PMID: 37719583; PubMed Central PMCID: PMC10503965.
124. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015; 112(4):1232–7. Epub 20141222. doi: 10.1073 /pnas.1418490112. PubMed PMID: 25535358; PubMed Central PMCID: PMC4313820.
125. Aldughmi M, Aburub AS, Al-Sharman A. Sleep quality and screen time among university professors: impact of emergency remote teaching amidst COVID-19 crisis. Sleep Breath. 2024; 28(4):1809–17. Epub 20240418. doi: 10.1007/s11325 -024-03030-3. PubMed PMID: 38632182.
126. Lopes T, Borba ME, Lopes R, Fisberg RM, Lemos Paim S, Vasconcelos Teodoro V, et al. Eating late negatively affects sleep pattern and apnea severity in individuals with sleep apnea. J Clin Sleep Med. 2019; 15(3):383–92. Epub 20190315. doi: 10.5664/jcsm.7658. PubMed PMID: 30853037; PubMed Central PMCID: PMC6411188.
127. Griffith CA, Leidy HJ, Gwin JA. Indices of sleep health are associated with timing and duration of eating in young adults. J Acad Nutr Diet. 2024; 124(8):1051–7. Epub 20240430. doi: 10.1016/j.jand.2024.04.016. PubMed PMID: 38697355.
128. Buettner D, Skemp S. Blue zones: Lessons from the world’s longest lived. Am J Lifestyle Med. 2016; 10(5):318–21. Epub 20160707. doi: 10.1177/1559827616637066. PubMed PMID: 30202288; PubMed Central PMCID: PMC6125071.
129. Al-Halaseh S, Alnaimat F. Enhancing reliability in anti-aging research: A call for adherence to reporting standards. Anti-Aging Eastern Europe. 2023; 2(4):189–92. doi: 10.56543/aaeeu .2023.2.4.01.
130. Popescu I, Deelen J, Illario M, Adams J. Challenges in anti-aging medicine-trends in biomarker discovery and therapeutic interventions for a healthy lifespan. J Cell Mol Med. 2023; 27(18):2643–50. Epub 20230823. doi: 10.1111/jcmm.17912. PubMed PMID: 37610311; PubMed Central PMCID: PMC10494298.
131. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018; 10(4):573–91. doi: 10.18632/aging.101414. PubMed PMID: 29676998; PubMed Central PMCID: PMC5940111.
132. Wang B, Szucs A, Sandalova E, Horberg EJ, O’Keefe PA, Island L, et al. Awareness, knowledge, and motivations about lifespan, healthspan, and Healthy Longevity Medicine in the general population: the HEalthy LOngevity (HELO) conceptual framework. Geroscience. 2025; 47(3):4567–76. Epub 20250224. doi: 10.1007 /s11357-025-01562-4. PubMed PMID: 39992490; PubMed Central PMCID: PMC12181574.
133. Hevolution foundation. Aging reimagined: The shift to healthspan science. 2024. Link: https://www .reuters.com/plus/acumen/global-health /hevolution-aging-reimagined (Last visit: October 1, 2025).
134. Kuo CL, Liu P, Drouard G, Vuoksimaa E, Kaprio J, Ollikainen M, et al. A proteomic signature of healthspan. medRxiv. 2025. Epub 20250328. doi: 10.1101/2024.06.26.24309530. PubMed PMID: 38978645; PubMed Central PMCID: PMC11230312.
135. Crane PA, Wilkinson G, Teare H. Healthspan versus lifespan: new medicines to close the gap. Nat Aging. 2022; 2(11):984–8. doi: 10.1038 /s43587-022-00318-5. PubMed PMID: 37118086.
136. Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019; 393(10184):1958–72. Epub 20190404. doi: 10.1016/S0140 -6736(19)30041-8. PubMed PMID: 30954305; PubMed Central PMCID: PMC6899507.
137. Bizuayehu HM, Ahmed KY, Kibret GD, Dadi AF, Belachew SA, Bagade T, et al. Global disparities of cancer and its projected burden in 2050. JAMA Netw Open. 2024; 7(11):e2443198. Epub 20241104. doi: 10.1001 /jamanetworkopen.2024.43198. PubMed PMID: 39499513; PubMed Central PMCID: PMC11539015.
138. CDC. About chronic diseases. 2025. Link: https://www.cdc.gov/chronic -disease/about/index.html (Last visit: October 1, 2025).
139. Topol E. Deep medicine: How artificial intelligence can make healthcare human again. New York, NY: Basic Books; 2019.
140. Hughes J, Shymka M, Ng T, Phulka JS, Safabakhsh S, Laksman Z. Polygenic risk score implementation into clinical practice for primary prevention of cardiometabolic disease. Genes (Basel). 2024; 15(12). Epub 20241209. doi: 10.3390/genes15121581. PubMed PMID: 39766848; PubMed Central PMCID: PMC11675431.
141. Zhang K, Fu R, Liu R, Su Z. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer. 2024; 10(2):161–74. Epub 20230914. doi: 10.1016/j.trecan.2023.08.010. PubMed PMID: 37709615.
142. Abel J, Jain S, Rajan D, Padigela H, Leidal K, Prakash A, et al. AI powered quantification of nuclear morphology in cancers enables prediction of genome instability and prognosis. NPJ Precis Oncol. 2024; 8(1):134. Epub 20240619. doi: 10.1038/s41698 -024-00623-9. PubMed PMID: 38898127; PubMed Central PMCID: PMC11187064.
143. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014; 159(4):709–13. doi: 10.1016/j.cell.2014.10.039. PubMed PMID: 25417146; PubMed Central PMCID: PMC4852871.
144. Musendekwa M. Ethical and social issues in anti-aging medicines. In: Sahu S, editor. Drug Discovery and Antiaging Approaches for Human Longevity: Hershey (PA): IGI Global; 2025. p. 509–30.
145. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7):e1000097. Epub 20090721. doi: 10.1371 /journal.pmed.1000097. PubMed PMID: 19621072; PubMed Central PMCID: PMC2707599.
146. Green BN, Johnson CD, Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. J Chiropr Med. 2006; 5(3):101–17. doi: 10.1016/S0899 -3467(07)60142–6. PubMed PMID: 19674681; PubMed Central PMCID: PMC2647067.
147. Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest. 2013; 123(3):980–9. Epub 20130301. doi: 10.1172/JCI64099. PubMed PMID: 23454761; PubMed Central PMCID: PMC3582126.
148. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019; 11(19):8048–67. Epub 20191004. doi: 10.18632 /aging.102355. PubMed PMID: 31586989; PubMed Central PMCID: PMC6814615.
149. Jafari M. Healthspan pharmacology. Rejuvenation Res. 2015; 18(6):573–80. Epub 20151110. doi: 10.1089/rej.2015.1774. PubMed PMID: 26444965; PubMed Central PMCID: PMC4685493.
150. Chun E, Crete A, Neal C, Joseph R, Pojednic R. The healthspan project: A retrospective pilot of biomarkers and biometric outcomes after a 6-month multi-modal wellness intervention. Healthcare (Basel). 2024; 12(6). Epub 20240318. doi: 10.3390/ healthcare12060676. PubMed PMID: 38540640; PubMed Central PMCID: PMC10970491.
151. Yang M, Wang M, Zhao X, Xu F, Liang S, Wang Y, et al. DNA methylation marker identification and poly-methylation risk score in prediction of healthspan termination. Epigenomics. 2024; 16(7):461–72. Epub 20240314. doi: 10.2217/epi-2023 -0343. PubMed PMID: 38482663.
152. Dergaa I, Ben Saad H. Artificial intelligence and promoting open access in academic publishing. Tunis Med. 2023; 101(6):533–6. Epub 20230605. PubMed PMID: 38372545; PubMed Central PMCID: PMC11261472.
153. Dergaa I, Chamari K, Zmijewski P, Ben Saad H. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biol Sport. 2023; 40(2):615-22. Epub 20230315. doi: 10.5114/biolsport .2023.125623. PubMed PMID: 37077800; PubMed Central PMCID: PMC10108763.
154. Hidouri S, Kamoun H, Salah S, Jellad A, Ben Saad H. Key guidelines for responding to reviewers. F1000Res. 2024; 13:921. Epub 20240920. doi: 10.12688/f1000research .154614.3. PubMed PMID: 39246824; PubMed Central PMCID: PMC11377928.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.