Folia Neuropathologica
eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2025
vol. 63
 
Share:
Share:
Original paper

Application of a convolutional neural network model to construct an automatic, AI-based identification system for rat kidney tissue microscopic images

Chen Yun
1, 2
,
Ai-Yun Zha
2, 3
,
Xiaofan He
4
,
Suhua Xu
4
,
Xiaohong Tang
5
,
Qiang Li
6
,
Lianghong Yin
2, 3
,
Shaodong Luan
7

  1. Department of Nephrology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
  2. Clinical Medical Research Institute of the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
  3. Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, Guangdong Province, China
  4. Guangdong Medical Devices Quality Surveillance and Test Institute, Guangzhou 510663, Guangdong Province, China
  5. Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, 510260 China
  6. Department of Nephrology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan 523000, China
  7. Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, Guangdong Province, China
Folia Neuropathol 2025; 63 (3): 289-303
Online publish date: 2025/09/16
Article file
- Application.pdf  [1.38 MB]
Get citation
 
PlumX metrics:
 
1. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, de Boer IH. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 2016; 316: 602-610.
2. Baker N, Garrigan P, Phillips A, Kellman PJ. Configural relations in humans and deep convolutional neural networks. Front Artif Intell 2023; 5: 961595.
3. Barrera-Chimal J, Girerd S, Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int 2019; 96: 302-319.
4. Bolocan VO, Secareanu M, Sava E, Medar C, Manolescu LSC, Cătălin Rașcu AȘ, Costache MG, Radavoi GD, Dobran RA, Jinga V. Convolutional neural network model for segmentation and classification of clear cell renal cell carcinoma based on multiphase CT images. J Imaging 2023; 9: 280.
5. Bouteldja N, Klinkhammer BM, Bülow RD, Droste P, Otten SW, Freifrau von Stillfried S, Moellmann J, Sheehan SM, Korstanje R, Menzel S, Bankhead P, Mietsch M, Drummer C, Lehrke M, Kramann R, Floege J, Boor P, Merhof D. Deep learning-based segmentation and quantification in experimental kidney histopathology. J Am Soc Nephrol 2021; 32: 52-68.
6. Chen JH, Asch SM. Machine learning and prediction in medicine – beyond the peak of inflated expectations. N Engl J Med 2017; 376: 2507-2509.
7. Deng H, Liu M. Personalized smart clothing design based on multimodal visual data detection. Comput Intell Neurosci 2022; 2022: 4440652.
8. Hao Y, Liu Y, Wu Z, Han L, Chen Y , Chen G, Chu L, Tang S, Yu Z, Chen Z, Lai B. Edgeflow: Achieving practical interactive segmentation with edge-guided flow. In: Proceedings of the IEEE/CVF International Conference on Computer Vision: 2021. IEEE Computer Society 2021; 1551-1560.
9. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 2020; 42: 386-397.
10. He K, Zhang X, Ren S, Sun J. “Deep residual learning for image recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015; 770-778.
11. Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S,
12. Roelofs JJTH, Stegall MD, Alexander MP, Smith BH, Smeets B, Hilbrands LB, van der Laak JAWM. Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol 2019; 30: 1968-1979.
13. Jiang J, Chan L, Nadkarni GN. The promise of artificial intelligence for kidney pathophysiology. Curr Opin Nephrol Hypertens 2022; 31: 380-386.
14. Korbut AI, Taskaeva IS, Bgatova NP, Muraleva NA, Orlov NB, Dashkin MV, Khotskina AS, Zavyalov EL, Konenkov VI, Klein T, Klimontov VV. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int J Mol Sci 2020; 21: 2987.
15. Kriegeskorte N, Golan T. Neural network models and deep learning. Curr Biol 2019; 29: R231-R236.
16. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM 2017; 60: 84-90.
17. Kuklyte J, Fitzgerald J, Nelissen S, Wei H, Whelan A, Power A, Ahmad A, Miarka M, Gregson M, Maxwell M, Raji R, Lenihan J, Finn-Moloney E, Rafferty M, Cary M, Barale-Thomas E, O’Shea D. Evaluation of the use of single- and multi-magnification convolutional neural networks for the determination and quantitation of lesions in nonclinical pathology studies. Toxicol Pathol 2021; 49: 815-842.
18. Li Y, Zhang T. Deep neural mapping support vector machines. Neural Netw 2017; 93: 185-194.
19. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst 2022; 33: 6999-7019.
20. Liu C, Yan S, Wang Y, Wang J, Fu X, Song H, Tong R, Dong M, Ge W, Wang J, Yang H, Wang C, Xia P, Zhao L, Shen S, Xie J, Xu Y, Ma P, Li H, Lu S, Ding Y, Jiang L, Lin Y, Wang M, Qiu F, Feng W, Yang L. Drug-induced hospital-acquired acute kidney injury in China: A multicenter cross-sectional survey. Kidney Dis (Basel) 2021; 7: 143-155.
21. Ma Y, Yu D, Wu T, Wang H. PaddlePaddle: An open-source deep learning platform from industrial practice. Front Data Comp 2019; 1: 105-115.
22. Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, Thipperudraswamy SP. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors (Basel) 2022; 12: 562.
23. Meng Z, Chen S, Lyu T, Zhang Z, Wang X, Sheng B, Mao L. Recognition and classification of glomerular pathological images based on deep learning. J Comp Aided Design Comp Graphics 2021; 33: 947-955.
24. Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, Hautbergue GM, Holbrook JD, Ferraiuolo L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020; 16: 440-456.
25. Nespoux J, Vallon V. SGLT2 inhibition and kidney protection. Clin Sci (Lond) 2018; 132: 1329-1339.
26. Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res 2020; 2020: 9416419.
27. Paddle/python/paddle/nn/layer/conv.py [https://github.com/PaddlePaddle/Paddle/blob/release/2.3/python/paddle/nn/layer/conv.py#L521]
28. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. Pytorch: An imperative style, high-performance deep learning library. ArXiv 2019: n.pag.
29. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 2016: IEEE Computer Society 2016; 779-788.
30. Shlipak MG, Tummalapalli SL, Boulware LE, Grams ME, Ix JH, Jha V, Kengne AP, Madero M, Mihaylova B, Tangri N, Cheung M, Jadoul M, Winkelmayer WC, Zoungas S; Conference Participants. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2021; 99: 34-47.
31. Significance of Kernel size [https://medium.com/analytics-vidhya/significance-of-kernel-size-200d769aecb1]
32. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2015. IEEE 2015; 1-9.
33. Wang Y, Wen Q, Jin L, Chen W. Artificial intelligence-assisted renal pathology: advances and prospects. J Clin Med 2022; 11: 4918.
34. Zeng C, Nan Y, Xu F, Lei Q, Li F, Chen T, Liang S, Hou X, Lv B, Liang D, Luo W, Lv C, Li X, Xie G, Liu Z. Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning. J Pathol 2020; 252: 53-64.
35. Zhang H, Botler M, Kooman JP. Deep learning for image analysis in kidney care. Adv Kidney Dis Health 2023; 30: 25-32.
Copyright: © 2025 Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.