eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank

Share:
Share:
Review paper

Brachytherapy and 3D printing for skin cancer: A review paper

Michal Poltorak
1
,
Pawel Banatkiewicz
1
,
Lukasz Poltorak
2
,
Piotr Sobolewski
1, 3
,
Damian Zimon
1, 3
,
Maciej Szwast
4
,
Irena Walecka
1, 3

1.
The National Institute of Medicine of the Ministry of the Interior and Administration, Warsaw, Poland
2.
Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
3.
Department of Dermatology, Centre of Postgraduate Medical Education, Warsaw, Poland
4.
Department of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
J Contemp Brachytherapy 2024
Online publish date: 2024/03/28
Article file
- Brachytherapy and 3D.pdf  [0.40 MB]
Get citation
 
 
1. Bath-Hextall F, Leonardi-Bee J, Smith C et al. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Int J Cancer 2007; 121: 2105-2108.
2. Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 2007; 4: 462-469.
3. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424.
4. Lear JT, Szeimies RM, Madan V. Non-melanoma skin cancer. Lancet 2010; 375: 673-685.
5. Rowe DE, Carroll RJ, Day CL. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip Implications for treatment modality selection. J Am Acad Dermatol 1992; 26: 976-990.
6. Rowe DE, Carroll RJ, Day CL. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J Dermatol Surg Oncol 1989; 15: 424-431.
7. Skowronek J. Brachytherapy in the treatment of skin cancer: An overview. Postepy Dermatol Alergol 2015; 32: 362-367.
8. Gerbaulet A, Potter R, Mazeron JJ et al. The GEC ESTRO Handbook of Brachytherapy, ESTRO 2002.
9. Niu H, Hsi WC, Chu JCH et al. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy. Med Phys 2004; 31: 3372-3377.
10. Kowalik Ł, Łyczek J, Sawicki M et al. Individual applicator for brachytherapy for various sites of superficial malignant lesions. J Contemp Brachytherapy 2013; 5: 45-49.
11. Köhler-Brock A, Prager W, Pohlmann S et al. The indications for and results of HDR afterloading therapy in diseases of the skin and mucosa with standardized surface applicators (the Leipzig applicator). Strahlenther Onkol 1999; 175: 170-174.
12. Guix B, Finestres F, Tello JI et al. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int J Radiat Oncol Biol Phys 2000; 47: 95-102.
13. Ghaly M, Zinkin H, Dannenberg M et al. HDR brachytherapy with standardized surface applicators in the treatment of superficial malignant skin lesions. Int J Radiat Oncol Biol Phys 2008; 72: S505-506.
14. Gauden R, Pracy M, Avery AM et al. HDR brachytherapy for superficial non-melanoma skin cancers. J Med Imaging Radiat Oncol 2013; 57: 212-217.
15. Malicki J, Lobodziec W, Slosarek K. Dose-rate distribution under partially shielded beams. Strahlenther Onkol 1990; 166: 733-737.
16. Bielęda G, Chicheł A, Boehlke M et al. 3D printing of individual skin brachytherapy applicator: Design, manufacturing, and early clinical results. J Contemp Brachytherapy 2022; 14: 205-214.
17. Rodriguez S, Santos M, Richart J et al. High-dose-rate brachytherapy in skin cancers: Patient convenience, local control and cosmetical results. Brachytherapy 2008; 7: 159.
18. Casey S, Bahl G, Awotwi-Pratt JB. High dose rate 192-Ir-brachytherapy for basal cell carcinoma of the skin
19. using a 3D printed surface mold. Cureus 2019; 11: e4913.
20. Bellis R, Rembielak A, Barnes EA et al. Additive manufacturing (3D printing) in superficial brachytherapy. J Contemp Brachytherapy 2021; 13: 468-482.
21. Jones EL, Tonino Baldion A, Thomas C et al. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy. Brachytherapy 2017; 16: 409-414.
22. Villalba SR, Perez-Calatayud MJ, Bautista JA et al. Novel simple templates for reproducible positioning of skin applicators in brachytherapy. J Contemp Brachytherapy 2016; 8: 344-348.
23. Arenas M, Sabater S, Sintas A et al. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: A financial study for its integration into clinical workflow. J Contemp Brachytherapy 2017; 9: 270-276.
24. Arenas M, Sabater S, Gascón M et al. Colomer, Quality assurance in radiotherapy: Analysis of the causes of not starting or early radiotherapy withdrawal. Radiat Oncol 2014; 9: 260.
25. Chmura J, Erdman A, Ehler E et al. Novel design and development of a 3D-printed conformal superficial brachytherapy device for the treatment of non-melanoma skin cancer and keloids. 3D Print Med 2019; 5: 10.
26. Harris BD, Nilsson S, Poole CM. A feasibility study for using ABS plastic and a low-cost 3D printer for patient-specific brachytherapy mould design. Australas Phys Eng Sci Med 2015; 38: 399-412.
27. Lecornu M, Silva M, Barraux V et al. Digital applicator by 3D printing in contact brachytherapy. Cancer Radiother 2019; 23: 328-333.
28. Botero-Valencia JS, Mejia-Herrera M, Pearce JM. Design and implementation of 3-D printed radiation shields for environmental sensors. HardwareX 2022; 11: e00267.
29. Elsafi M, El-Nahal MA, Sayyed MI et al. Novel 3-D printed radiation shielding materials embedded with bulk and nanoparticles of bismuth. Sci Rep 2022; 12: 12467.
30. Wu Y, Cao Y, Wu Y et al. Neutron shielding performance of 3D-Printed boron carbide PEEK composites. Materials (Basel) 2020; 13: 2314.
31. Shemelya CM, Rivera A, Perez AT et al. Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten-polycarbonate polymer matrix composite for space-based applications. J Electron Mater 2015; 44: 2598-2607.
32. Elango G, Roopan SM. Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2015; 139: 367-373.
33. Karami H, Karimi MA, Haghdar S et al. Synthesis of lead oxide nanoparticles by Sonochemical method and its application as cathode and anode of lead-acid batteries. Mater Chem Phys 2008; 108: 337-344.
34. Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Anal Lett 2017; 50: 50-62.
35. Abulayazied DE, Saudi HA, Zakaly MH et al. Novel nanocomposites based on polyvinyl alcohol and molybdenum nanoparticles for Gamma irradiation shielding. Opt Laser Technol 2022; 156: 108560.
36. D’Alimonte L, Ravi A, Helou J et al. Optimized penile surface mold brachytherapy using latest stereolithography techniques: A single-institution experience. Brachytherapy 2019; 18: 348-352.
37. Clarke S. 3D Printed surface applicators for high dose rate brachytherapy. Dalhousie University Halifax 2016.
38. Zhao Y, Moran K, Yewondwossen M et al. Clinical applications of 3-dimensional printing in radiation therapy. Med Dosim 2017; 42: 150-155.
39. Tagliaferri L, Ciardo FG, Fionda B et al. Non-melanoma skin cancer treated by contact high-dose-rate radiotherapy (brachytherapy): A mono-institutional series and literature review. In Vivo (Brooklyn) 2021; 35: 2313-2319.
40. Guinot JL, Rembielak A, Perez-Calatayud J et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol 2018; 126: 377-385.
41. Duckworth T, Wang H, Barbee D. Implementation of a Leipzig surface HDR treatment program with 3D printing. Brachytherapy 2017; 16: S96.
42. Delishaj D, Laliscia C, Manfredi B et al. Non-melanoma skin cancer treated with high-doserate brachytherapy and Valencia applicator in elderly patients: A retrospective case series. J Contemp Brachytherapy 2015; 7: 437-444.
43. Tormo A, Celada F, Rodriguez S et al. Non-melanoma skin cancer treated with HDR valencia applicator: Clinical outcomes. J Contemp Brachytherapy 2014; 6: 167-172.
44. Pellizzon A, Fogaroli R, Jenwey Chen M et al. High-dose-rate brachytherapy using Leipzig applicators for non-melanoma localized skin cancer. J Contemp Brachytherapy 2020; 12: 435-440.
45. Pérez-Calatayud J, Granero D, Ballester F et al. A dosimetric study of Leipzig applicators. Int J Radiat Oncol Biol Phys 2005; 62: 579-584.
46. Lloyd S, Alektiar KM, Nag S et al. Intraoperative high-dose-rate brachytherapy: An American Brachytherapy Society consensus report. Brachytherapy 2017; 16: 446-465.
47. Fulkerson RK. Dosimetric characterization of surface applicators for use with high dose rate 192 Ir and electronic brachytherapy sources. ProQuest Dissertations and Theses; Thesis (Ph.D.), The University of Wisconsin, Madison, 2012.
48. Alam M, Nanda S, Mittal BB et al. The use of brachytherapy in the treatment of nonmelanoma skin cancer: A review. J Am Acad Dermatol 2011; 65: 377-388.
49. Cisek P, Kieszko D, Bilski M et al. Interstitial HDR brachytherapy in the treatment of non-melanocytic skin cancers around the eye. Cancers (Basel) 2021; 13: 1-9.
50. Svoboda HJ, Kovarik J, Morris F. High dose-rate microselectron molds in the treatment of skin tumors. Int J Radiat Oncol Biol Phys 1995; 31: 967-972.
51. Lopes A, Sabondjian E, Baltazar AR. In vivo dosimetry for superficial high dose rate brachytherapy with optically stimulated luminescence dosimeters: A comparison study with metal-oxide-semiconductor field-effect transistors. Radiation 2022; 2: 338-356.
52. Subashi E, Jacobs C, Hood R et al. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med 2020; 6: 15.
53. Park SY, Kang S, Park JM et al. Development and dosimetric assessment of a patient-specific elastic skin applicator for high-dose-rate brachytherapy. Brachytherapy 2019; 18: 224-232.
54. Bielęda G, Marach A, Boehlke M et al. 3D-printed surface applicators for brachytherapy: A phantom study. J Contemp Brachytherapy 2021; 13: 549-562.
55. Granero D, Perez-Calatayud J, Vijande J et al. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations. Med Phys 2014; 41: 021703.
56. Fedorov A, Beichel R, Kalpathy-Cramer J et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30: 1323-1341.
57. Edwards C, Marks R. Evaluation of biomechanical properties of human skin. Clin Dermatol 1995; 13: 375-380.
58. Bassi S, Langan B, Malone C. Dosimetry assessment of patient-specific 3D printable materials for HDR surface brachytherapy. Phys Med 2019; 67: 166-175.
59. Devic S. Radiochromic film dosimetry: Past, present, and future. Phys Med 2011; 27: 122-134.
60. Sarfehnia A, Kawrakow I, Seuntjens J. Direct measurement of absorbed dose to water in HDR i 192 r brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43. Med Phys 2010; 37: 1924-1932.
61. Uniyal SC, Naithani UC, Sharma SD. Evaluation of Gafchromic EBT2 film for the measurement of anisotropy function for high-dose-rate 192Ir brachytherapy source with respect to thermoluminescent dosimetry. Rep Pract Oncol Radiother 2011; 16: 14-20.
62. Ricotti R, Vavassori A, Bazani A et al. 3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage. Phys Med 2016; 32: 1698-1706.
63. Dagdeviren C, Shi Y, Joe P et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat Mater 2015; 14: 728-736.
64. Sike Á, Wengenroth J, Upīte J et al. Improved method for cannula fixation for long-term intracerebral brain infusion. J Neurosci Methods 2017; 290: 145-150.
65. Yap HK, Lim JH, Nasrallah F et al. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J Med Eng Technol 2016; 40: 199-209.
66. Nath R, Rivard MJ, DeWerd LA et al. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: Report of Task Group 167. Med Phys 2016; 43: 3178-3205.
67. Craft DF, Kry SF, Balter P et al. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys 2018; 45: 1614-1621.
68. Haryńska A, Janik H, Sienkiewicz M et al. PLA-potato thermoplastic starch filament as a sustainable alternative to the conventional PLA filament: Processing, characterization, and FFF 3D printing. ACS Sustain Chem Eng 2021; 9: 6923-6938.
69. Mazzanti V, Malagutti L, Mollica F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers (Basel) 2019; 11: 1094.
70. Patpatiya P, Chaudhary K, Shastri A et al. A review on polyjet 3D printing of polymers and multi-material structures. Proc Inst Mech Eng C J Mech Eng Sci 2022; 236: 7899-7926.
71. Chand R, Sharma VS, Trehan R. Investigating mechanical properties of 3D printed parts manufactured in different orientations on Multijet printer. 2021, https://doi.org/10.21203/rs.3.rs-247844/v1.
72. Della Bona A, Cantelli V, Britto VT et al. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater 2021; 37: 336-350.
73. Park JM, Son J, An HJ et al. Bio-compatible patient-specific elastic bolus for clinical implementation. Phys Med Biol 2019; 64: 105006.
74. Pandian A, Belavek C. A review of recent trends and challenges in 3D printing. 2016, https://asee-ncs.org/proceedings/2016/faculty_regular_papers/2016_ASEE_NCS_paper_10.pdf.
75. Robar JL, Kammerzell B, Hulick K et al. Novel multi jet fusion 3D-printed patient immobilization for radiation therapy. J Appl Clin Med Phys 2022; 23: e13773.
76. Ferreira C, Johnson D, Rasmussen K et al. A novel conformal superficial high-dose-rate brachytherapy device for the treatment of nonmelanoma skin cancer and keloids. Brachytherapy 2017; 16: 215-222.
77. Douglass J, Caraça Santos AM. Application of optical photogrammetry in radiation oncology: HDR surface mold brachytherapy. Brachytherapy 2019; 18: 689-700.
78. Pashazadeh A, Boese A, Friebe M. Surface anatomy leading to personalized surface applicator: 3D printing for brachytherapy of skin tumors. AMMM 2019; 1: 3-21.
79. Rapchak AK, Likhacheva AO, Page CM et al. Custom 3-D printed skin shielding for skin surface brachytherapy. Brachytherapy 2018; 17: S65.
80. Guthier CV, Devlin PM, Harris TC et al. Development and clinical implementation of semi-automated treatment planning including 3D printable applicator holders in complex skin brachytherapy. Med Phys 2020; 47: 869-879.
81. Buchauer K, Henke G, Plasswilm L et al. EP-2020: Vertical type surface brachytherapy applicator improvement with a 3D printed dose compensation body. Radiother Oncol 2016; 119: S954.
82. Chatzikonstantinou G, Diefenhardt M, Fleischmann M et al. Customized 3D-printed molds for high dose-rate brachytherapy in facial skin cancer: First clinical experience. J Dtsch Dermatol Ges 2023; 21: 35-41.
83. Pashazadeh A, Castro NJ, Morganti E et al. Feasibility of 3D printing for customized radiotherapeutic models to be used in superficial skin cancer therapy. AMMM 2019; 1.
84. Diefenhardt M, Chatzikonstantinou G, Meissner M et al. HDR brachytherapy with individual epithetic molds for facial skin cancer: techniques and first clinical experience. Int J Dermatol 2021; 60: 717-723.
85. Pashazadeh A, Boese A, Castro NJ et al. A new 3D printed applicator with radioactive gel for conformal brachytherapy of superficial skin tumors. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 6979-6982.
86. Schreiber S, Reitemeier B, Herrmann T et al. A process for making cutaneous radiation applicators based on digital data. Strahlenther Onkol 2006; 182: 349-352.
87. Schumacher M, Lasso A, Cumming I et al. 3D-printed surface mould applicator for high-dose-rate brachytherapy. In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, SPIE, 2015: 94152E.
88. Aldridge S, Jones EL, Tonino A et al. Skin HDR brachytherapy treatment using a mould made with a 3D printer. Brachytherapy 2016; 15: S147-S148.
89. Mayer C, Gasalberti DP, Kumar A. Brachytherapy. StatPearls Publishing, Treasure Island (FL) 2024.
90. Skowronek J. Current status of brachytherapy in cancer treatment – short overview. J Contemp Brachytherapy 2017; 9: 581-589.
91. Chargari C, Deutsch E, Blanchard P et al. Brachytherapy: An overview for clinicians. CA Cancer J Clin 2019; 69:
92. 386-401.
93. De Boeck L, Beliën J, Egyed W. Dose optimization in high-dose-rate brachytherapy: A literature review of quantitative models from 1990 to 2010. Oper Res Health Care 2014; 3: 80-90.
94. Papagiannis P, Pantelis E, Karaiskos P. Current state of the art brachytherapy treatment planning dosimetry algorithms. Br J Radiol 2014; 87: 20140163.
95. Rivard MJ, Venselaar JLM, Beaulieu L. The evolution of brachytherapy treatment planning. Med Phys 2009; 36: 2136-2153.
96. Taylor JM, Dasgeb B, Liem S et al. High-dose-rate brachytherapy for the treatment of basal and squamous cell carcinomas on sensitive areas of the face: A report of clinical outcomes and acute and subacute toxicities. Adv Radiat Oncol 2021; 6: 100616.
97. Kalaghchi B, Esmati E, Ghalehtaki R et al. High-dose-rate brachytherapy in treatment of non-melanoma skin cancer of head and neck region: preliminary results of a prospective single institution study. J Contemp Brachytherapy 2018; 10: 115-122.
98. Reeve L, Baldrick P. Biocompatibility assessments for medical devices–evolving regulatory considerations. Expert Rev Med Devices 2017; 14: 161-167.
99. Ghasemi-Mobarakeh L, Kolahreez D, Ramakrishna S et al. Key terminology in biomaterials and biocompatibility. Biomed Eng 2019; 10: 45-50.
100. Anderson JM, Langone JJ. Issues and perspectives on the biocompatibility and immunotoxicity 1 evaluation of implanted controlled release systems. J Control Release 1999; 57: 107-113.
101. Guttridge C, Shannon A, O’Sullivan A et al. Biocompatible 3D printing resins for medical applications: A review of marketed intended use, biocompatibility certification, and post-processing guidance. Ann 3D Print Med 2022; 5.
102. Cunha JAM, Mellis K, Sethi R et al. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators. J Appl Clin Med Phys 2015; 16: 246-253.
103. Skinner LB, Niedermayr T, Prionas N et al. Intensity modulated Ir-192 brachytherapy using high-Z 3D printed applicators. Phys Med Biol 2020; 65: 155018.
104. Fowler TL, Buyyounouski MK, Jenkins CH et al. Clinical implementation of 3D printing for brachytherapy: Techniques and emerging applications. Brachytherapy 2016; 15: S166.
105. Renard S, Salleron J, Py JF et al. High-dose-rate brachytherapy for facial skin cancer: Outcome and toxicity assessment for 71 cases. Brachytherapy 2021; 20: 624-630.
106. Gogineni E, Cai H, Carillo D et al. Computed tomography-based flap brachytherapy for non-melanoma skin cancers of the face. J Contemp Brachytherapy 2021; 13: 51-58.
107. Laliscia C, Fuentes T, Coccia N et al. High-dose-rate brachytherapy for non-melanoma skin cancer using tailored custom molds – a single-centre experience. Contemp Oncol (Pozn) 2021; 25: 12-16.
108. Roberson J, Patel R, Slutshy JB et al. Tumor control and cosmetic outcome of weekly iridium-192 high-dose-rate brachytherapy for nonmelanoma skin cancers in the elderly. Brachytherapy 2021; 20: 818-827.
109. Huo W, Ding Y, Sheng C et al. Application of 3D printing in cervical cancer brachytherapy. J Radiat Res Appl Sci 2022; 15: 18-24.
110. Ballard DH, Trace AP, Ali S et al. Clinical applications of 3D printing: Primer for radiologists. Acad Radiol 2018; 25: 52-65.
111. Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys 2018; 45: e740-e760.
112. Rengier F, Mehndiratta A, Von Tengg-Kobligk H et al. 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg 2010; 5: 335-341.
113. Goyanes A, Fernández-Ferreiro A, Majeed A et al. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm 2018; 536: 158-164.
114. Ebert LC, Thali MJ, Ross S. Getting in touch-3D printing in forensic imaging. Forensic Sci Int 2011; 211: e1-6.
115. Gillett D, Marsden D, Ballout S et al. 3D printing 18F radioactive phantoms for PET imaging. EJNMMI Phys 2021; 8: 38.
116. De Schepper S, Gnanasegaran G, Dickson JC et al. Absolute quantification in diagnostic spect/ct: The phantom premise. Diagnostics (Basel) 2021; 1: 2333.
117. Rakitina E, Rakitin I, Staleva V et al. An overview of 3D laser scanning technology. Proc Int Sci Conference, 26-28 June, Varna, Bulgaria 2008.
118. Macgillivray M, Domina T. 3D laser scanning: A model of multidisciplinary research. 2007. https://www.researchgate.net/publication/228625999.
119. Ebrahim MAB, Abdel-Bary M. EBRAHIM, 3D laser scanners’ techniques overview. 2015. https://www.researchgate.net/publication/282753883.
120. Shah S, Sundaram G, Bartlett D et al. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques. J Dent 2004; 32: 653-658.
121. Haleem A, Javaid M. 3D scanning applications in medical field: A literature-based review. Clin Epidemiol Glob Health 2019; 7: 199-210.
122. Rooney MK, Rosenberg DM, Braunstein S et al. Three-dimensional printing in radiation oncology: A systematic review of the literature. J Appl Clin Med Phys 2020; 21: 15-26.
Copyright: © 2024 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.