eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
SCImago Journal & Country Rank

4/2022
vol. 14
 
Share:
Share:
more
 
 
abstract:
Original paper

Dosimetric comparison of two afterloaders and treatment planning systems in vaginal high-dose-rate brachytherapy

Deborah C. Marshall
1
,
Julie R. Bloom
1
,
Zahra Ghiassi-Nejad
1
,
Vishal Gupta
1
,
Audrey Saitta
1
,
Allison Powers
1
,
Ren-Dih Sheu
1
,
Yeh-Chi Lo
1
,
Vishruta Dumane
1

1.
Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, United States
J Contemp Brachytherapy 2022; 14, 4: 398–402
Online publish date: 2022/08/08
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
In treatment planning for high-dose-rate (HDR) single-channel vaginal cylinder brachytherapy, dose distribution along the cylinder is influenced by the anisotropy of the source. Differences in anisotropy are due to differences in source dimensions and characteristics. In this study, we compared HDR vaginal cylinder brachytherapy treatment plans from two afterloader/treatment planning systems.

Material and methods
Seventy-five plans with prescription to the surface were generated for cylinders in Varian BrachyVision and Elekta Oncentra. To understand the impact of source anisotropy on dose distribution to the surface of the cylinder, potential effect caused by differences in cylinder geometry between systems was eliminated by re-planning Varian cylinder using Elekta source model. Mean relative dose was calculated for each point as well as the dome and length of the cylinder. Related-samples Wilcoxon signed-rank tests were performed to compare the mean relative dose between systems.

Results
Treatment plans with VariSource iX source and cylinder demonstrated 16.2% lower (p < 0.001) dose at the tip compared to Elekta v.3. Average dose to the points along the dome of cylinder was 128.4% ±17.9% prescription dose with VariSource iX source and cylinder, and 99.9% ±4.3% with Elekta v.3 source and cylinder. For the same cylinder geometry, the effect of source characteristics produced up to 36.8% difference in dose homogeneity. When cylinder types were planned with the same source, there was no significant difference in dose distribution.

Conclusions
This study demonstrates that the effect of source characteristics produced up to 37% difference in dose homogeneity when comparing two afterloader/treatment planning systems, independent of cylinder geometry. This insight on variation in dose surrounding source system is imperative for dosimetry considerations. Depending on the choice of afterloader, the extent of EQD2 for tumor control versus normal tissue toxicity can vary.

keywords:

brachytherapy, toxicity, quality, endometrial cancer, radiation therapy, HDR brachytherapy, vaginal cylinder, source anisotropy

 
Quick links
© 2022 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.