1. Moitra M, Owens S, Hailemariam M, Wilson KS, Mensa-Kwao A, Gonese G, et al. Global mental health: where we are and where we are going. Curr Psychiatry Rep 2023; 25: 301-311.
2.
Kim YE, Jung YS, Ock M, Yoon SJ. DALY estimation approaches: understanding and using the incidence-based approach and the prevalence-based approach. J Prev Med Public Health 2022; 55: 10-18.
3.
Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022; 9: 137-150.
4.
Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim HC, et al. Artificial intelligence for mental health and mental illnesses: an overview. Curr Psychiatry Rep 2019; 21: 116. DOI: 10.1007/s11920-019-1094-0.
5.
Terra M, Baklola M, Ali S, El-Bastawisy K. Opportunities, applications, challenges and ethical implications of artificial intelligence in psychiatry: a narrative review. Egypt J Neurol Psychiatry Neurosurg 2023; 59: 80. DOI: 10.1186/s41983-023-00681-z.
6.
Sun J, Dong QX, Wang SW, Zheng YB, Liu XX, Lu TS, et al. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian J Psychiatr 2023; 87: 103705. DOI: 10.1016/j.ajp.2023.103705.
7.
Unützer J. Clinical practice. Late-life depression. N Engl J Med 2007; 357: 2269-2276.
8.
Wang J, Black M, Rankin D, Wallace J, Hughes CF, Hoey L, et al. (eds.). Analysis of risk factors and diagnosis for anxiety disorder in older people with the aid of artificial intelligence: observational study. 31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS). 7-8 December 2023. DOI: 10.1109/AICS60730.2023.10470782.
9.
Maslej MM, Kloiber S, Ghassemi M, Yu J, Hill SL. Out with AI, in with the psychiatrist: a preference for human-derived clinical decision support in depression care. Transl Psychiatry 2023; 13: 210. DOI: 10.1038/s41398-023-02509-z.
10.
Bassett C. The computational therapeutic: exploring Weizenbaum’s ELIZA as a history of the present. AI & Society 2019; 34: 803-812.
11.
Tan M, Xiao Y, Jing F, Xie Y, Lu S, Xiang M, et al. Evaluating machine learning-enabled and multimodal data-driven exercise prescriptions for mental health: a randomized controlled trial protocol. Front Psychiatry 2024; 15: 1352420. DOI: 10.3389/fpsyt.2024.1352420.
12.
Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, et al. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr 2015; 1: 15030. DOI: 10.1038/npjschz.2015.30.
13.
Elvevåg B, Foltz PW, Rosenstein M, Delisi LE. An automated method to analyze language use in patients with schizophrenia and their first-degree relatives. J Neurolinguistics 2010; 23: 270-284.
14.
Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol 2014; 93: 162-166.
15.
Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev 2017; 74 (Pt A): 58-75. DOI: 10.1016/j.neubiorev.2017.01.002.
16.
Nepal S, Pillai A, Wang W, Griffin T, Collins AC, Heinz M, et al. MoodCapture: depression detection using in-the-wild smartphone images. Proc SIGCHI Conf Hum Factor Comput Syst 2024; 2024. DOI: 10.1145/3613904.3642680.
17.
Beltrami D, Gagliardi G, Rossini Favretti R, Ghidoni E, Tamburini F, Calzà L. Speech analysis by natural language processing techniques: a possible tool for very early detection of cognitive decline? Front Aging Neurosci 2018; 10: 369. DOI: 10.3389/fnagi.2018.00369.
18.
Lattie EG, Adkins EC, Winquist N, Stiles-Shields C, Wafford QE, Graham AK. Digital mental health interventions for depression, anxiety, and enhancement of psychological well-being among college students: systematic review. J Med Internet Res 2019; 21: e12869. DOI: 10.2196/12869.
19.
Bojarska K, Chabko E, Gadomska I, Grochowski M, Iwaniec K, Kubacka A, Sobolewska J, Waleczko T. Organizacja i funkcjonowanie punktu wsparcia na uczelni. Parlament Studentów Rzeczypospolitej Polskiej; 2020. Available from: https://wsparciepsychologiczne.psrp.org.pl/wp-content/uploads/2020/12/Organizacja_i_funkcjonowanie_punktow_wsparcia_na_uczelni.pdf.
20.
Auerbach RP, Mortier P, Bruffaerts R, Alonso J, Benjet C, Cuijpers P, et al. WHO World Mental Health Surveys International College Student Project: prevalence and distribution of mental disorders. J Abnorm Psychol 2018; 127: 623-638.
21.
Zhang A, Borhneimer LA, Weaver A, Franklin C, Hai AH, Guz S, et al. Cognitive behavioral therapy for primary care depression and anxiety: a secondary meta-analytic review using robust variance estimation in meta-regression. J Behav Med 2019; 42: 1117-1141.
22.
Santucci LC, McHugh RK, Elkins RM, Schechter B, Ross MS, Landa CE, et al. Pilot implementation of computerized cognitive behavioral therapy in a university health setting. Adm Policy Ment Health 2014; 41: 514-521.
23.
Kato PM. Video games in health care: closing the gap. Rev Gen Psychol 2010; 14: 113-121.
24.
Burns JM, Davenport TA, Durkin LA, Luscombe GM, Hickie IB. The internet as a setting for mental health service utilisation by young people. Med J Australia 2010; 192 (Suppl 11): S22-S26. DOI: 10.5694/j.1326-5377.2010.tb03688.x.
25.
Merry SN, Stasiak K, Shepherd M, Frampton C, Fleming T, Lucassen MFG. The effectiveness of SPARX, a computerised self help intervention for adolescents seeking help for depression: randomised controlled non-inferiority trial. Br Med J 2012; 344: e2598. DOI: 10.1136/bmj.e2598.
26.
Lee HS, Wright C, Ferranto J, Buttimer J, Palmer CE, Welchman A, et al. Artificial intelligence conversational agents in mental health: Patients see potential, but prefer humans in the loop. Front Psychiatry 2025; 15. DOI: 10.3389/fpsyt.2024.1505024.
27.
Benda N, Desai P, Reza Z, Zheng A, Kumar S, Harkins S, et al. Patient perspectives on AI for mental health care: cross-sectional survey study. JMIR Ment Health 2024; 11: e58462. DOI: 10.2196/58462.
28.
Reading Turchioe M, Desai P, Harkins S, Kim J, Kumar S, Zhang Y, et al. Differing perspectives on artificial intelligence in mental healthcare among patients: a cross-sectional survey study. Front Digit Health 2024; 6: 1410758. DOI: 10.3389/fdgth.2024.1410758.
29.
Fritsch SJ, Blankenheim A, Wahl A, Hetfeld P, Maassen O, Deffge S, et al. Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients. Digit Health 2022; 8: 20552076221116772. DOI: 10.1177/20552076221116772.
30.
Thakkar A, Gupta A, De Sousa A. Artificial intelligence in positive mental health: a narrative review. Front Digit Health 2024; 6: 1280235. DOI: 10.3389/fdgth.2024.1280235.
31.
Renn BN, Schurr M, Zaslavsky O, Pratap A. Artificial intelligence: an interprofessional perspective on implications for geriatric mental health research and care. Front Psychiatry 2021; 12: 734909. DOI: 10.3389/fpsyt.2021.734909.
32.
Luxton DD. Chapter 1 – An Introduction to Artificial Intelligence in Behavioral and Mental Health Care. In: Luxton DD (ed.). Artificial Intelligence in Behavioral and Mental Health Care. San Diego: Academic Press; 2016, p. 1-26. DOI: 10.1016/B978-0-12-420248-1.00001-5.
33.
Pan Y, Wang P, Xue B, Liu Y, Shen X, Wang S, et al. Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis. Front Psychiatry 2025; 15. DOI: 10.3389/fpsyt.2024.1515549.
34.
Dell C. Letter to the editor in response to Samuel Woodnutt, Chris Allen, Jasmine Snowden, Matt Flynn, Simon Hall, Paula Libberton, ChatGPT, Francesca Purvis paper titled: Could artificial intelligence write mental health nursing care plans? J Psychiatr Ment Health Nurs 2024; 31: 240. DOI: 10.1111/jpm.12965.
35.
Kumar M, Mani UA, Tripathi P, Saalim M, Roy S. Artificial hallucinations by google bard: think before you leap. Cureus 2023; 15: e43313. DOI: 10.7759/cureus.43313.
36.
Omar M, Soffer S, Charney AW, Landi I, Nadkarni GN, Klang E. Applications of large language models in psychiatry: a systematic review. Front Psychiatry 2024; 15. DOI: 10.3389/fpsyt.2024.1422807.
37.
Chang Y, Su CY, Liu YC. Assessing the performance of chatbots on the Taiwan psychiatry licensing examination using the rasch model. Healthcare 2024; 12: 2305. DOI: 10.3390/healthcare12222305.
38.
López Del Hoyo Y, Elices M, Garcia-Campayo J. Mental health in the virtual world: challenges and opportunities in the metaverse era. World J Clin Cases 2024; 12: 2939-2945.
39.
Cao Y, Yin H, Hua X, Bi S, Zhou D. Effects of artificial intelligence and virtual reality interventions in art therapy among older people with mild cognitive impairment. Austral J Ageing 2025; 44: e70006. DOI: 10.1111/ajag.70006.
40.
Cheng SW, Chang CW, Chang WJ, Wang HW, Liang CS, Kishimoto T, et al. The now and future of ChatGPT and GPT in psychiatry. Psychiatry Clin Neurosci 2023; 77: 592-596.
41.
Heston TF. Safety of large language models in addressing depression. Cureus 2023; 15: e50729. DOI: 10.7759/cureus.50729.
42.
Freitas J, Uğuralp A, Oğuz‐Uğuralp Z, Puntoni S. Chatbots and mental health: insights into the safety of generative AI. Journal of Consumer Psychology 2023; 34: 481-491.
43.
Blease C, Locher C, Leon-Carlyle M, Doraiswamy M. Artificial intelligence and the future of psychiatry: qualitative findings from a global physician survey. Digit Health 2020; 6: 2055207620968355. DOI: 10.1177/2055207620968355.
44.
Dakanalis A, Wiederhold BK, Riva G. Artificial intelligence: a game-changer for mental health care. Cyberpsychol Behav Soc Netw 2024; 27: 100-104.
45.
Luxton DD. Artificial intelligence in psychological practice: current and future applications and implications. Professional Psychology: Research and Practice 2014; 45: 332-339.
46.
Rubin M, Arnon H, Huppert JD, Perry A. Considering the role of human empathy in AI-driven therapy. JMIR Ment Health 2024; 11: e56529. DOI: 10.2196/56529.
47.
Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med 2023; 183: 589-596.
48.
Chung LL, Kang J. “I’m hurt too”: the effect of a chatbot’s reciprocal self-disclosures on users’ painful experiences. Archives of Design Research 2023; 36: 67-84.
49.
Elliott R, Bohart AC, Watson JC, Murphy D. Therapist empathy and client outcome: an updated meta-analysis. Psychotherapy (Chic) 2018; 55: 399-410.
50.
Lopes E, Jain G, Carlbring P, Pareek S. Talking mental health: a battle of wits between humans and AI. Journal of Technology in Behavioral Science 2024; 9: 628-638.
51.
Hohenstein J, Kizilcec RF, DiFranzo D, Aghajari Z, Mieczkowski H, Levy K, et al. Artificial intelligence in communication impacts language and social relationships. Sci Rep 2023; 13: 5487. DOI: 10.1038/s41598-023-30938-9.
52.
Ettman CK, Galea S. The potential influence of AI on population mental health. JMIR Ment Health 2023; 10: e49936. DOI: 10.2196/49936.
53.
Roose K. Can A.I. be blamed for a teen’s suicide? The New York Times 2024. Available from: https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html.
54.
Yew GCK. Trust in and ethical design of carebots: the case for ethics of care. Int J Soc Robot 2021; 13: 629-645.
55.
Bhugra D, Ventriglio A, Kuzman MR, Ikkos G, Hermans MH, Falkai P, et al. EPA guidance on the role and responsibilities of psychiatrists. Eur Psychiatry 2015; 30: 417-422.
56.
Tavory T. Regulating AI in mental health: ethics of care perspective. JMIR Ment Health 2024; 11: e58493. DOI: 10.2196/58493.
57.
Hauser TU, Skvortsova V, De Choudhury M, Koutsouleris N. The promise of a model-based psychiatry: building computational models of mental ill health. Lancet Digit Health 2022; 4: e816-e828. DOI: 10.1016/S2589-7500(22)00152-2.
58.
Espejo G, Reiner W, Wenzinger M. Exploring the role of artificial intelligence in mental healthcare: progress, pitfalls, and promises. Cureus 2023; 15: e44748. DOI: 10.7759/cureus.44748.
59.
Vajawat B, Varshney P, Banerjee D. Digital gaming interventions in psychiatry: evidence, applications and challenges. Psychiatry Res 2021; 295: 113585. DOI: 10.1016/j.psychres.2020.113585.
60.
Castelvecchi D. Can we open the black box of AI? Nature 2016; 538: 20-23.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). License allowing third parties to download and share its works but not commercially purposes or to create derivative works.