eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Journal's reviewers Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
4/2018
vol. 56
 
Share:
Share:
more
 
 
abstract:
Original paper

Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation

Bożena Gabryel, Sebastian Liber

Folia Neuropathol 2018; 56 (4): 328-336
Online publish date: 2018/12/31
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Metformin, a type 2 anti-diabetic drug and an activator of AMP-activated protein kinase (AMPK), has been shown to reduce infarct size and pathological changes affecting astroglia in animal models of ischemic stroke. In this study, we evaluated how metformin affects cell viability, apoptosis and determined the role of AMPK, as well as JNK p46/p54 and p38 kinases, in the observed phenomena in the culture of primary rat cortical astrocytes subjected to 12 h of oxygen and glucose deprivation (OGD). Metformin improved cell viability, reduced the fraction of apoptotic nuclei, and inhibited the activation of the executive caspase-3. Decreased activation of JNK p54 and p38 was associated with increased Bcl-XL expression and decreased mitochondrial leakage of cytochrome c. However, only cell viability and partially the fraction of apoptotic nuclei varied concomitantly with changes in AMPK activity, suggesting that AMPK is critical for metformin-mediated effects and regulates programmed cell death in a caspase-independent manner. Experiments with the inhibitors of JNK and p38 supports the role of these kinases in the drug-related inhibition of mitochondrial and extrinsic pathway of apoptosis.
keywords:

metformin, apoptosis, astrocytes, oxygen-glucose deprivation

Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe