Folia Neuropathologica
eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Role of apocynin in alleviation of oxidative stress and neuronal autophagy after traumatic brain injury by activating the PI3K/Akt/Nrf2 pathway in rats

Yan Feng
1
,
Yaru Ju
2
,
Ming Yang
1
,
Qiang Wu
1
,
Guozhu Sun
1
,
Zhongjie Yan
1
,
Jingchen Li
1

  1. Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
  2. Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, China
Folia Neuropathol 2026; 64
Online publish date: 2026/02/12
Article file
- Role of apocynin.pdf  [0.32 MB]
Get citation
 
PlumX metrics:
 
1. Castiglione D, Platania A, Conti A, Falla M, D’Urso M, Marranzano M. Dietary Micronutrient and Mineral Intake in the Mediterranean Healthy Eating, Ageing, and Lifestyle (MEAL) Study. Antioxidants 2018; 7: 79.
2. Chandran R, Kim T, Mehta SL, Udho E, Chanana V, Cengiz P, Kim H, Kim C, Vemuganti R. A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury. J Cereb Blood Flow Metab 2018; 38: 1818-1827.
3. Cho KS, Shin M, Kim S, Lee SB. Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases. Oxidative Med Cell Longev 2018; 2018: 4120458.
4. Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S. Traumatic brain injury: Oxidative stress and neuroprotection. Antioxid Redox Signal 2013; 19: 836-853.
5. Cruz-Álvarez S, Santana-Martínez R, Avila-Chávez E, BarreraOviedo D, Hernández-Pando R, Pedraza-Chaverri J, Maldonado PD. Apocynin protects against neurological damage induced by quinolinic acid by an increase in glutathione synthesis and Nrf2 levels. Neuroscience 2017; 350: 65-74.
6. Davis CK, Bathula S, Hsu M, Morris-Blanco KC, Chokkalla AK, Jeong S, Choi J, Subramanian S, Park JS, Fabry Z, Vemuganti R. An antioxidant and anti-ER stress combo therapy decreases inflammation, secondary brain damage and promotes neurological recovery following traumatic brain injury in mice. J Neurosci 2022; 42: 6810-6821.
7. Descloux C, Ginet V, Clarke PG, Puyal J, Truttmann AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci 2015; 45: 75-85.
8. Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res 2017; 42: 337-346.
9. DiPietro V, Yakoub KM, Caruso G, Lazzarino G, Signoretti S, Barbey AK, Tavazzi B, Lazzarino G, Belli A, Amorini AM. Antioxidant therapies in traumatic brain injury. Antioxidants 2020; 9: 260.
10. Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, Huang Z. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev 2021; 2021: 5816837.
11. Fan W, Li X, Zhang D, Li H, Shen H, Liu Y, Chen G. Detrimental role of miRNA-144-3p in intracerebral hemorrhage induced secondary brain injury is mediated by formyl peptide receptor 2 downregulation both in vivo and in vitro. Cell Transplant 2019; 28: 723-738.
12. Feng Y, Cui CM, Liu X, Wu Q, Hu FG, Zhang HF, Ma ZZ, Wang LQ. Protective role of apocynin via suppression of neuronal autophagy and TLR4/NF-kB signaling pathway in a rat model of traumatic brain injury. Neurochem Res 2017; 42: 3296-3309.
13. Feng Y, Gao J, Cui Y, Li MH, Li R, Cui CM, Cui JZ. Neuroprotective effects of resatorvid against traumatic brain injury in rat: Involvement of neuronal autophagy and TLR4 signaling pathway. Cell Mol Neurobiol 2017; 37: 155-168.
14. Feng Y, Ju Y, Yan Z, Ji M, Li J, Wu Q, Yang M, Sun G. Resveratrol attenuates autophagy and inflammation after traumatic brain injury by activation of PI3K/Akt/mTOR pathway in rats. Folia Neuropathol 2022; 60: 153-164. Feng Y, Ju YR, Wu Q, Sun GZ, Yan ZJ. TAK-242, a toll-like receptor 4 antagonist, against brain injury by alleviates autophagy and inflammation in rats. Open Life Sci 2023; 18: 20220662.
15. Gao Y, Li J, Wu L, Zhou C, Wang Q, Li X, Zhou ML, Wang HD. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as
16. a potential mechanism. J Surg Res 2016; 206: 67-76.
17. Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, Fernandes DC, Laurindo FR, Cicogna AC, Okoshi MP, Okoshi K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol 2018; 17: 15.
18. Ginet V, Puyal J, Clarke PG. Truttmann AC. Enhancement of autophagic flux after neonatal cerebral hypoxia–ischemia and its region-specific relationship to apoptotic mechanisms. Am
19. J Pathol 2009; 175: 1962-1974.
20. Gong P, Jia HY, Li R, Ma Z, Si M, Qian C, Zhu FQ, Sheng-Yong L.Downregulation of Nogo-B ameliorates cerebral ischemia/reperfusion injury in mice through regulating microglia polarization via TLR4/NF-kappaB pathway. Neurochem Int 2023; 167: 105553.
21. Huang YN, Yang LY, Greig NH, Wang YC, Lai CC, Wang JY. Neuroprotective effects of pifithrin-a against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 2018; 8: 2368.
22. Kapoor M, Sharma N, Sandhir R, Nehru B. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion hippocampus injury in rat brain. Biomed Pharmacother 2018; 97: 458-472.
23. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK. Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets 2018; 17: 689-695.
24. Khayatan D, Razavi SM, Arab ZN, Niknejad AH, Nouri K, Momtaz S,
25. Gumpricht E, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A. Protective effects of curcumin against traumatic brain injury. Biomed Pharmacother 2022; 154: 113621.
26. Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem 2022; 69: 248-264.
27. Kocak C, Kocak FE, Akcilar R, Isiklar OO, Kocak H, Bayat Z, Simsek H, Taser F, Altuntas I. Molecular and biochemical evidence on the protective effects of embelin and carnosic acid in isoproterenol-induced acute myocardial injury in rats. Life Sci 2016; 147: 15-23.
28. Kučera J, Binó L, Štefková K, Jaroš J, Vašíček O, Večeřa J, Kubala L, Pacherník J. Apocynin and diphenyleneiodonium induce oxidative stress and modulate PI3K/Akt and MAPK/Erk activity in mouse embryonic stem cells. Oxid Med Cell Longev 2016; 2016: 7409196.
29. Ladak AA, Enam SA, Ibrahim MT. A review of the molecular mechanisms of traumatic brain injury. World Neurosurg 2019; 131: 126-132.
30. Lesniak A, Pick CG, Misicka A, Lipkowski AW, Sacharczuk M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016; 101: 506-518.
31. Li B, Shi Y, Fu Y. Apocynin inhibits compressive force-induced apoptosis and autophagy of periodontal ligament stem cells. Oral Dis 2023; 29: 2837-2844.
32. Li ST, Dai Q, Zhang SX, Liu YJ, Yu QQ, Tan F, Lu SH, Wang Q, Chen JW, Huang HQ, Liu PQ, Li M. Ulinastatin attenuates LPS induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NFkB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin 2018; 39: 1294-1304.
33. Li X, Sung P, Zhang D, Yan L. Curcumin in vitro neuroprotective effects are mediated by p62/keap-1/Nrf2 and PI3K/AKT signaling pathway and autophagy inhibition. Physiol Res 2023; 72: 497-510.
34. Lin CJ, Chen TH, Yang LY, Shih CM. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 2014; 5: e1147.
35. Liu N, Lin MM, Huang SS, Liu ZQ, Wu JC, Liang ZQ, Qin ZH, Wang Y. NADPH and mito-apocynin treatment protects against KA-induced excitotoxic injury through autophagy pathway. Front Cell Dev Biol 2021; 9: 612554.
36. Liu T, Zheng W, Wang L, Wang L, Zhang Y. TLR4/NF-kB signaling pathway participates in the protective effects of apocynin on gestational diabetes mellitus induced placental oxidative stress and inflammation. Reprod Sci 2020; 27: 722-730.
37. Loane DJ, Stoica BA, Byrnes KR, Jeong W, Faden AI. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J Neurotrauma 2013; 30: 403-412.
38. Lu Q, Harris VA, Kumar S, Mansour HM, Black SM. Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol 2015; 6: 516-523.
39. Lu XY, Wang HD, Xu JG, Ding K, Li T. NADPH oxidase inhibition improves neurological outcome in experimental traumatic brain injury. Neurochem Int 2014; 69: 14-19.
40. Luo C, Tao L. The function and mechanisms of autophagy in traumatic brain injury. Adv Exp Med Biol 2020; 1207: 635-648.
41. Manoj A, Gaurav S, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O’Keefe RJ, Mbalaviele G, Shen J, Abu-Amer Y. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun 2020; 11: 3427.
42. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10: 549-557.
43. Ndisang JF. Synergistic interaction between heme oxygenase (HO) and nuclear factor E2-related factor-2 (Nrf2) against oxidative stress in cardiovascular related diseases. Curr Pharm Des 2017; 23: 1465-1470.
44. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, Tsaknakis G, Watt SM, Drakesmith CW, Chen R, Wood MJA, Zhao ZH, Kessler B, Vekrellis K, Buchan AM. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med 2013; 19: 351-357.
45. Parastan RH, Christopher M, Torrys YS, Mahadewa TGB. Combined therapy potential of apocynin and tert-butylhydroquinone as a therapeutic agent to prevent secondary progression to traumatic brain injury. Asian J Neurosurg 2020; 15: 10-15.
46. Petrônio MS, Zeraik ML, Fonseca LM, Ximenes VF. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 2013; 18: 2821-2839.
47. Qin YY, Li M, Feng X, Wang J, Cao L, Shen XK, Chen J, Sun M, Sheng R, Han F, Qin ZH. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med 2017; 104: 333-345.
48. Rajanikant GK, Sugunan S. Commentary. linking productive autophagy to neuroprotection: potential implications for anti-ischemic therapy. CNS Neurol Disord Drug Targets 2013; 12: 298-299.
49. Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-kB interplay in cerebrovascular and neurodegenera tive disorders: molecular mechanisms and possible therapeutic approaches. Redox Biology 2019; 21: 101059.
50. Song SX, Gao JL, Wang KJ, Li R, Tian YX, Wei JQ, Cui JZ. Attenuation of brain edema and spatial learning deficits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 2013; 7: 327-331.
51. Tang Y, Liu Y, Zhou H, Lu H, Zhang Y, Hua J, Liao X. Esketamine is neuroprotective against traumatic brain injury through its modulation of autophagy and oxidative stress via AMPK/mTOR-dependent TFEB nuclear translocation. Exp Neurol 2023; 366: 114436.
52. Wang L, Wang L, Shi X, Xu S. Chlorpyrifos induces the apoptosis and necroptosis of L8824 cells through the ROS/PTEN/PI3K/AKT axis. J Hazard Mater 2020; 398: 122905.
53. Wang W, Zhang X, Lin L, Ren J, He R, Sun K. Inhibition of NADPH oxidase 2 (NOX2) reverses cognitive deficits by modulating excitability and excitatory transmission in the hippocampus after traumatic brain injury. Biochem Biophys Res Commun 2022; 617 (Pt 1): 1-7.
54. Wible DJ, Bratton SB. Reciprocity in ROS and autophagic signaling. Curr Opin Toxicol 2018; 7: 28-36.
55. Wu D, Zhang K, Hu P. The role of autophagy in acute myocardial infarction. Front Pharmacol 2019; 10: 551.
56. Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G.NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19: 184.
57. Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012; 7: e34504.
58. Zhuang Y, Wu H, Wang X, He J, He S and Yin Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid Med Cell Longev 2019; 2019: 7591840.
Copyright: © 2026 Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2026 Termedia Sp. z o.o.
Developed by Termedia.