eISSN: 1897-4317
ISSN: 1895-5770
Gastroenterology Review/Przegląd Gastroenterologiczny
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac
Portal dla gastroenterologów!
SCImago Journal & Country Rank
vol. 13
Poleć ten artykuł:
streszczenie artykułu:
Artykuł oryginalny

Safety analysis of endoscopic haemostasis using a high-frequency live tissue electric welding device – EKVZ300 PATONMED

Yegor Tryliskyy, Andrii Kebkalo, Chee S. Wong, Sergii Rublenko, Mykhailo Rublenko, Mykola Ilnytskiy, Ievgenii Negria, Vladislav Hordovskiy

Data publikacji online: 2018/09/17
Pełna treść artykułu
Pobierz cytowanie
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero

The method of a bipolar high-frequency welding (HFEW) of soft living tissues of animals and humans has been used in various areas of surgery. However, it has not been utilized in endoscopic gastrointestinal procedures yet. HFEW has strong potential to be used in gastrointestinal endoscopic procedures due to the competitive cost of generator devices and due to its proven ability to coagulate vessels of wide diameter as compared to standard electrocautery devices.

To investigate the effectiveness of the endoscopic haemostasis using HFEW generator device – 300 PATONMED – in a porcine model of arterial gastrointestinal bleeding.

Material and Methods
A porcine model of arterial gastrointestinal bleeding was created. A 300 PATONMED set to the “welding” regime and a flexible 7 Fr bipolar coagulation probe with two electrodes on the tip fashioned spirally attached to convey energy were tested. Once bleeding from the artery had been initiated, the bipolar probe was applied to coagulate the bleeding site. Animals were observed for clinical evidence of recurrent bleeding and subsequently were euthanised for histological examination.

A total of 10 experiments were successfully completed. An optimal haemostatic effect was achieved with durations of cautery of five to eight seconds in all animals. Continuous observation after haemostasis revealed no evidence of re-bleeding. No systemic side-effects of the technique were observed. Histological examination has shown that the peripheral thermal injury area that surrounded the coagulation zone did not spread beyond the mucosal layer in depth and 2 mm in width.

This animal study provided evidence for the safety of an HFEW in the treatment of gastrointestinal bleeding. The advantages of this technology are smokeless operative area, no tissue overheating, minimal necrosis and damage to surrounding gastric tissue, and the fact that the area of HFEW is confined to the area of the electrodes.

Cook DJ, Guyatt GH, Salena BJ, Laine LA. Endoscopic therapy for acute nonvariceal upper gastrointestinal hemorrhage: a meta-analysis. Gastroenterology 1992; 102: 139-48.
Sacks HS, Chalmers TC, Blum AL, et al. Endoscopic hemostasis. An effective therapy for bleeding peptic ulcers. JAMA 1990; 264: 494-9.
Sung JJ, Tsoi KK, Lai LH, et al. Endoscopic clipping versus injection and thermo-coagulation in the treatment of non-variceal upper gastrointestinal bleeding: a meta-analysis. Gut 2007; 56: 1364-73.
Aslanian HR, Laine L. Hemostatic powder spray for GI bleeding. Gastrointest Endosc 2013; 77: 508-10.
Han S, Cai Z, Ning X, et al. Comparison of a new high-frequency electric welding system for intestinal closure with hand-sewn in vivo pig model. J Laparoendosc Adv Surg Techn A 2015; 25: 662-7.
Linchevskyy O, Makarov A, Getman V. Lung sealing using the tissue-welding technology in spontaneous pneumothorax. Eur J Cardiothorac Surg 2010; 37: 1126-8.
Umanets N, Pasyechnikova NV, Naumenko VA, Henrich PB. High-frequency electric welding: a novel method for improved immediate chorioretinal adhesion in vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1697-703.
Patton B, Lebedev V, Furmanov Y, et al. Instrument and method for the end-to-end reconnection of intestinal tissues. Google Patents 2007.
Paton BE, Lebedev VK, Furmanov YA, et al. Instrument and method for reconnection of intestinal tissues. Google Patents 2008.
Paton BE, Lebedev VK, Lebedev AV, et al. System and method for control of tissue welding. Google Patents 2003.
Paton B, Lebedev V, Vorona D, et al. Bonding of soft biological tissues by passing high frequency electric current therethrough. Google Patents 2005.
Giday SA, Kim Y, Krishnamurty DM, et al. Long-term randomized controlled trial of a novel nanopowder hemostatic agent (TC-325) for control of severe arterial upper gastrointestinal bleeding in a porcine model. Endoscopy 2011; 43: 296-9.
Kebkalo A, Rublenko M, Rublenko S, et al. Experimental model of massive gastrointestinal bleeding: methodology aspects. Clin Exp Pathol 2016; 57: 47-54.
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe