eISSN: 2450-4459
ISSN: 2450-3517
Lekarz POZ
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac
6/2017
vol. 3
 
Poleć ten artykuł:
Udostępnij:
więcej
 
 
streszczenie artykułu:
Artykuł przeglądowy

Mechanizmy lekooporności na fluorochinolony wśród bakterii odpowiedzialnych za zakażenia u pacjentów leczonych ambulatoryjnie

Danuta Dzierżanowska

Data publikacji online: 2017/12/28
Pełna treść artykułu
Pobierz cytowanie
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Fluorochinolony są grupą leków syntetycznych szeroko stosowanych w terapii zakażeń szpitalnych i pozaszpitalnych. Niektóre z fluorochinolonów, tj. lewofloksacyna i moksyfloksacyna, nazywane są fluorochinolonami oddechowymi z uwagi na znakomitą aktywność wobec Streptococcus pneumoniae, głównego patogenu zakażeń dróg oddechowych.

W artykule omówione zostały główne mechanizmy lekooporności na fluorochinolony najważniejszych patogenów w środowisku pozaszpitalnym, tj. Streptococcus pneumoniae, Staphylococcus aureus oraz Escherichia coli.

Lekooporność na fluorochinolony oddechowe wśród szczepów Streptococcus pneumoniae jest ciągle niska. Monitorowanie lekooporności na fluorochinolony i właściwe ich stosowanie w leczeniu zakażeń jest warunkiem zachowania przydatności tej grupy leków w terapii zakażeń w przyszłości.

Fluoroquinolones are a group of synthetic antibiotics frequently used in therapy of various infections in hospitals as well as in outpatients. Some of them, e.g. levofloxacin and moxifloxacin, the so-called “respiratory fluoroquinolones”, display improved activity against gram-positive pathogens, especially Streptococcus pneumoniae, the main pathogen of respiratory infections. The author describes the mechanisms of resistance to fluoroquinolones among the main outpatient pathogens, such as Streptococcus pneumoniae, Staphylococcus aureus, and Eschericha coli. It is emphasised that the percentage of resistant strains of Streptococcus pneumoniae isolated from outpatients is still very low. Monitoring resistance to quinolones and careful usage of these drugs in therapy is essential for the maintenance this group of drugs, and will be useful in the therapy of infectious diseases in the future.
słowa kluczowe:

fluorochinolony oddechowe, epidemiologia lekooporności, mutacje, bariery przepuszczalności, białka pompy effluksowej, oporność plazmidowa, strategia terapii

referencje:
Correia S, Poeta P, Hébraud M i wsp. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 2017; 66: 551-559.
Bisacchi GS. Origins of the quinolone class of antibacterials: an expanded “Discovery Story”. J Med Chem 2015; 58: 4874-4882.
Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 2015; 1354: 12-31.
Ceyssens PJ, Van Bambeke F, Mattheus W i wsp. Molecular analysis of rising fluoroquinolone resistance in Belgian non-invasive Streptococcus pneumoniae isolates (1995–2014). PLoS One 2016; 11: e0154816.
Sarma JB, Marshall B, Cleeve V i wsp. Effects of fluoroquinolone restriction (from 2007 to 2012) on resistance in Enterobacteriaceae: interrupted time-series analysis. J Hosp Infect 2015; 91: 68-73.
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74: 417-433.
Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr 2014; 2: 1-24.
Rodríguez-Martínez JM, Cano ME, Velasco C i wsp. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011; 17: 149-182.
Redgrave LS, Sutton SB, Webber MA i wsp. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 2014; 22: 438-445.
Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009; 69: 1555-1623.
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28: 337-418.
Robicsek A, Strahilevitz J, Jacoby GA i wsp. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006; 12: 83-88.
Yoshida H, Bogaki M, Nakamura M i wsp. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34: 1271-1272.
Seyedpour SM, Eftekhar F. Quinolone Susceptibility and Detection of qnr and aac(6’)-Ib-cr Genes in Community Isolates of Klebsiella pneumoniae. Jundishapur J Microbiol 2014; 7: e11136.
Orr D, Wilkinson P, Moyce L i wsp. Incidence and epidemiology of levofloxacin resistance in Streptococcus pneumoniae: experience from a tertiary referral hospital in England. J Antimicrob Chemother 2010; 65: 449-452.
Schmitz J, van der Linden M, Al-Lahham A i wsp. Fluoroquinolone resistance in Streptococcus pneumoniae isolates in Germany from 2004-2005 to 2014-2015. Int J Med Microbiol 2017; 307: 216-222.
Pletz MW, Fugit RV, McGee L i wsp. Fluoroquinolone-resistant Streptococcus pneumoniae. Emerg Infect Dis 2006; 12: 1462-1463.
Baylay AJ, Piddock LJ. Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother 2015; 70: 670-679.
Kang CI, Song JH, Kim SH i wsp. Risk factors for levofloxacin-nonsusceptible Streptococcus pneumoniae in community-acquired pneumococcal pneumonia: a nested case-control study. Eur J Clin Microbiol Infect Dis 2014; 33: 55-59.
Fournier B, Zhao X, Lu T i wsp. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob Agents Chemother 2000; 44: 2160-2165.
Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J Bacteriol 2002; 184: 1370-1377.
Truong-Bolduc QC, Strahilevitz J, Hooper DC. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50: 1104-1107.
Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012; 2012: 976273.
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66: 671-701.
Dasgupta N, Paul D, Dhar Chanda D i wsp. An insight into selection specificity of quinolone resistance determinants within Enterobacteriaceae family. J Glob Antimicrob Resist 2017; 10: 40-46.
van der Starre WE, van Nieuwkoop C, Paltansing S i wsp. Risk factors for fluoroquinolone-resistant Escherichia coli in adults with community-onset febrile urinary tract infection. J Antimicrob Chemother 2011; 66: 650-656.
Piekarska K, Wołkowicz T, Zacharczuk K i wsp. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents 2015; 45: 238-243.
POLECAMY
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe