eISSN: 1689-1716
ISSN: 0324-8267
Archiwum Medycyny Sądowej i Kryminologii/Archives of Forensic Medicine and Criminology
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Suplementy Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac
SCImago Journal & Country Rank
4/2014
vol. 64
 
Poleć ten artykuł:
Udostępnij:
więcej
 
 
streszczenie artykułu:
Artykuł przeglądowy

Neurofilamenty a urazowe uszkodzenie mózgu

Mariusz Kobek, Rafał Skowronek, Zbigniew Jankowski, Artur Pałasz

Arch Med Sąd Kryminol 2014; 64 (4): 268–279
Data publikacji online: 2015/03/31
Pełna treść artykułu
Pobierz cytowanie
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
W neurotraumatologii medyczno-sądowej praktyczne znaczenie ma obiektywne ustalenie wieku – czasu powstania stłuczenia mózgu. Obecnie postęp immunohistochemii umożliwia badania elementów strukturalnych komórek, w tym także białek cytoszkieletu neuronu – neurofilamentów, które ze względu na swoje właściwości mogłyby zostać wykorzystane do określania wieku obrażeń mózgu w medycynie sądowej.

Celem niniejszej pracy jest przegląd aktualnego piśmiennictwa pod kątem badań dotyczących zmian zachodzących w neurofilamentach po urazie mózgu, zarówno w modelach zwierzęcych, jak i w ludzkim materiale biologicznym. Przegląd wykazał brak danych dotyczących czasowych zmian struktury neurofilamentów po urazie mózgu u ludzi, które mogłyby zostać wykorzystane do określania wieku obrażeń w medycynie sądowej.

Objective determination of the time of brain contusion is of key importance in medicolegal neurotraumatology. Currently, the progress of immunohistochemistry allows the study of structural elements of cells including neurofilaments, i.e. neuronal cytoskeletal proteins possessing properties that could be used for determining the age of brain injury in forensic medicine.

The purpose of this study was to review recently published literature with a focus on studies investigating changes which occur in neurofilaments after brain trauma, both in animal models and in human biological material. The review has shown a lack of data on temporal changes in neurofilament expression after human brain trauma which could be used for determining the age of injuries in forensic medicine.
słowa kluczowe:

neurostruktura, neurofilamenty, urazowe uszkodzenie mózgu, medycyna sądowa, immunohistochemia

referencje:

http://www.who.int (31.05.2014).

Hausmann R. Timing of Cortical Contusions in Human Brain Injury. Morphological Parameters for a Forensic Wound-Age Estimation. W: Forensic Pathology Reviews, Vol. 1. Tsokos M (red.). Humana Press Inc: Totowa, New Jersey 2004; 53-75.

. Wang Q, Michiue T, Maeda H. Immunohistochemistry of Neuronal Apoptosis in Fatal Traumas: The Contribution of Forensic Molecular Pathology in Medical Science. W: Apoptosis and Medicine. Ntuli TM (red.). InTech, Rijeka 2012; 247-276.

Oemichen M, Auer RN, Konig HG. Forensic neuropathology and associated neurology. Springer-Verlag, Berlin Heidelberg 2006; 190-194.

Dettmeyer RB. Forensic histopathology. Springer-Verlag, Berlin Heidelberg 2011; 415-417.

Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh T. Protein accumulation in traumatic brain injury. Neuromol Med 2003; 4: 59-72.

Gresle MM, Butzkueven H, Shaw G. Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult Scler Int 2011; 2011: 315406.

Trojanowski JQ, Walkenstein N, Lee VM. Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. J. Neuroscience 1986; 6: 650-660.

Hamberger A, Huang YL, Zhu H, Bao F, Ding M, Blennow K, Olsson A, Hansson HA, Viano D, Haglid KG. Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma 2003; 20: 169-178.

Postmantur RM, Newcomb JK, Kampl A, Hayes RL. Light and confocal microscopic studies of evolutionary changes in neurofilament proteins following cortical impact injury in the rat. Exp Neurology 2000; 161: 15-26.

Huh J, Laurer HL, Raghupathi R, Helfaer MA, Saatman KE. Rapid loss and partial recovery of neurofilament immunostaining following focal brain injury in mice. Exp Neurology 2002; 175: 198-208.

Saatman KE, Graham DI, McIntosh TK. The neuronal cytoskeleton is at risk after mild and moderate brain injury. J Neurotrauma 1998; 15: 1047-1058.

Smith DH, Meaney DF. Axonal damage in traumatic brain injury. Neuroscientist 2000; 6: 483-495.

Ogata N, Yonekawa Y, Taki W, Kannagi R, Murachi T, Hamakubo T, Kikuchi H. Degradation of neurofilament protein in cerebral ischemia. J Neurosurgery 1989; 70: 103-107.

Aronowski J, Ki-Hyun C, Strong R, Grotta JC. Neurofilament proteolysis after focal ischemia; when do cells die after experimental stroke? J Cerebral Blood Flow Metabolism 1999; 19: 652-660.

Posmantur R, Hayes RL, Dixon CE, Taft WC. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 1994; 11: 533-545.

Sherriff FE, Bridges LR, Gentleman SM, Sivaloganathan S, Wilson S. Markers of axonal injury in post mortem human brain. Acta Neuropathol 1994; 88: 433-439.

Grady MS, Mc Laughlin MR, Christman CW. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury. J Neuropathol Exp Neurol 1993; 21: 143-152.

Serbest G, Burkhardt M, Siman R, Raghupathi R, Saatman KE. Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochemical Research 2007; 32: 2006-2014.

DiLeonardi AM, Huh J, Raghupathi R. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res 2009; 1263: 174-182.

Markos S. Neurofilament dephosphorylation and microglial activation following traumatic brain injury in the immature rat. TCNJ J Student Scholarship 2011; 13: 1-10.

King CE, Canty AJ, Vickers JC. Alterations in neurofilaments associated with reactive brain changes and axonal sprouting following acute physical injury to the rat neocortex. Neuropathol Appl Neurobiol 2001; 27: 115-126.

Geddes JW, Bondada V, Tekirian TL, Pang Z, Siman RG. Perikaryal accumulation and proteolysis of neurofilament proteins in the post-mortem rat brain. Neurobiol Aging 1995; 16: 651-660.

Wang H, Rao G, Zhu S, Qin Q. A study of HSP70 and NF in brain contusion timing. Fa Yi Xue Za Zhi 2000; 16: 132-134.

Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol 1992; 51: 158-176.

Li S, Sun Y, Shan D, Feng B, Xing J, Duan Y, Dai J, Lei H, Zhou Y. Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats – a comparative study with diffusion tensor imaging and morphological analysis. Int J Legal Med 2013; 127: 159-167.

Vajtr D, Benada O, Linzer P, Sámal F, Springer D, Strejc P, Beran M, Průša R, Zima T. Immunohistochemistry and serum values of S-100B, glial fibrillary acidic protein, and hyperphosphorylated neurofilaments in brain injuries. Soud Lek 2012; 57: 7-12.

Itabashi HJ, Andrews JM, Tomiyasu U, Erlich SS, Sathyavagiswaran L. Forensic Neuropathology. A Practical Review of the Fundamentals. Academic Press, London 2007.

Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, Agoston D. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 2012; 33: 3705-3711.

Gyorgy A, Ling G, Wingo D, Walker J, Tong L, Parks S, Januszkiewicz A, Baumann R, Agoston DV. Time-dependent changes in serum biomarker levels after blast traumatic brain injury. J Neurotrauma 2011; 28: 1121-1126.

Vajtr D, Průsa R, Houst’ava L, Sámal F, Kukacka J, Pachl J. Biochemical and immunohistochemical markers of brain injury. Soud Lek 2006; 51: 36-41.

Michael DB, Byers DM, Irwin LN. Gene expression following traumatic brain injury in humans: analysis by microarray. J Clin Neurosci 2005; 12: 284-290.

Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments at a glance. J Cell Sci 2012; 125 (Pt 14): 3257-3263.

Johnson GV, Greenwood JA, Costello AC, Troncoso JC. The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochem Res 1991; 16: 869-873.

Grellner W, Glenewinkel F. Exhumations: synopsis of morphological and toxicological findings in relation to the post-mortem interval. Survey on a 20-year period and review of the literature. Forensic Sci Int 1997; 90: 139-159.

Kobek M, Jankowski Z, Szala J, Gąszczyk-Ożarowski Z, Pałasz A, Skowronek R. Morphological approach to brain contusion-timing in forensic medicine – initial results from the study on the deceased. Neuronus 2014 – IBRO and IRUN Neuroscience Forum, Kraków 25-27.04.2014, Abstract book, p. 48.

Leestma J. Forensic Neuropathology. CRC Press Taylor and Francis Group, New York 2009; 534-542.

Cummings PM, Trelka DP, Springer KM. Atlas of forensic histopathology. Cambridge University Press, Cambridge 2011; 14-18.
POLECAMY
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe