ISSN: 1230-2813
Advances in Psychiatry and Neurology/Postępy Psychiatrii i Neurologii
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
vol. 27
Review article

Optical coherence tomography in the diagnostics of neurodegenerative diseases

Magdalena Torbus-Paluszczak, Beata Łabuz-Roszak

Adv Psychiatry Neurol 2018; 27 (4): 334-342
Online publish date: 2018/12/31
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
Review of the literature on the use of optical coherence tomography (OCT) in the diagnosis of the chosen neurodegenerative diseases – Alzheimer’s disease (AD) and Parkinson’s disease (PD). The review also includes multiple sclerosis (MS), where the neurodegenerative process is secondary to inflammatory-autoimmune processes.

The retina is an integral part of the central nervous system (CNS), so neurodegenerative processes also affect it. The transparency of the eyeball causes the retina to be a “window into the brain” and by using OCT we can look at the CNS. Thanks to the specific structure of the retina – its lack of myelin and small number of glial cells – the progress of neurodegenerative diseases can be assessed at a very early stage and, thanks to OCT, quantified. The parameters associated in the literature with OCT – RNFL (retinal nerve fiber layer) and GCL (ganglion cell layer) – were analysed in correlation to other diagnostic examinations and functional tests in chosen diseases (AD, PD, MS). Multiple studies have also evaluated the efficacy of OCT in patients with stroke, spinal-cerebellar ataxia, obstructive sleep apnea, congenital diseases of CNS, and with prion diseases.

OCT is a precise additional examination that allows to assess the process of neurodegeneration at a very early stage. The results should be interpreted with reference to clinical symptoms and other diagnostic techniques.


multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, neurodegeneration, optical coherent tomography

Masland RH. The neuronal organization of the retina. Neuron 2012; 76: 266-280.
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31: 407-441.
Greenberg BM, Frohman E. Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 2010; 3: 153-160.
Abtahian F, Jang IK. Optical coherence tomography: basic, current application and future potential. Curr Opin Pharmacol 2012; 12: 583-591.
Adgi M, Duker JS. Optical coherence tomography – current and future applications. Curr Opin Ophthalmol 2013; 24: 213-221.
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012; 71: 362-381.
Chiu K, Chan TF, Wu A, Leung IY, So KF, Chang RC. Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from retina? Age (Dordr) 2012; 34: 633-649.
Czajor K. Objawy okulistyczne w chorobie Alzheimera. Przegląd Okulistyczny 2009; 6: 1-2.
Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 1996; 17: 385-395.
Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S. β-amyloid deposition and functional impairment in the retina of the APPswe/PS1∆9 transgenic mouse model of Alzheimer’s disease. Invest Ophtalmol Vis Sci 2009; 50: 793-800.
Jindahara P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 2012; 135: 534-541.
Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2007; 420: 97-99.
He X-F, Liu Y-T, Peng C, Zhang F, Zhuang S, Zhang JS. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int J Ophthalmol 2012; 5: 401-405.
Iseri PK, Altinas O, Tokay T, Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006; 26: 18-24.
Bayhan HA, Bayhan SA, Celikbilek A, Tanik N, Gürdal C. Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clin Exp Opthalmol 2015; 43: 145-151.
Jones-Odeh E, Hammond CJ. How strong is the relationship between glaucoma, the retinal nerve fibre layer and neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis? Eye 2015; 29: 1270-1284.
Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007; 48: 2285-2289.
Kromer R, Serbecic N, Hausner L, Froelich L, Beutelspacher SC. Comparison of visual evoked potentials and retinal nerve fiber layer thickness in Alzheimer’s disease. Front Neurol 2013; 4: 203.
Sergott RC, Kayabasi U. Progression of plaques in retina with dementia in Alzheimer’s disease. In: 40th NANOS (North American Neuro-Ophthalmology Society) meeting, Rio Grande, Puerto Rico, USA: Annual Meeting Syllabus; 2014: 148.
Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain 2009; 132: 1128-1145.
Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127: 737-741.
He Q, Xu HP, Wang P, Tian N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS One 2013; 8: e79625.
Urwyler P, Nef T, Killen A, Collerton D, Thomas A, Burn D, et al. Visual complaints and visual hallucinations in Parkinson’s disease. Parkinsonism Relat Disord 2014; 20: 318-322.
Garcia-Martin E, Larrosa JM, Polo V, Satue M, Marques ML, Alarcia R, et al. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 2014; 157: 470-478.
Yu JG, Feng YF, Xiang Y, Huang JH, Savini G, Parisi V, et al. Retinal nervefiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 2014; 9: e85718.
Tsironi EE, Dastiridou A, Katsanos A, Dardiotis E, Veliki S, Patramani G, et al. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 2012; 12: 54.
Schneider M, Müller HP, Lauda F, Tumani H, Ludolph AC, Kassubek J, et al. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm 2014; 121: 41-47.
Shrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I. Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012; 2012: 728457.
Altintas O, Iseri P, Ozkan B, Caglar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 2008; 116: 137-146.
Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, et al. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol 2014; 98: 350-355.
Ahn J, Lee JY, Kim TW, et al. Retinal thinning correlates with nigral dopaminergic loss in de novo Parkinson disease. Neurology 2018; 91: e1003-e1012.
Petzold A, Wattjes MP, Costello F, et al. The investigation of acute optic neuritis neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447-458.
Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; 40: 2520-2527.
Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol 2010; 45: 520-526.
Balcer LJ. Clinical trials to clinical use: using vision as a model for multiple sclerosis and beyond. J Neuro-
ophthalmol 2014; 34 (Suppl): S18-S23.
Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; 58: 383-391.
Kupersmith MJ, Mandel G, Anderson S, et al. Baseline, one and three month changes in the prepapillary retinal nerve fiber layer in acute optic neuritis: relations to baseline vision and MRI. J Neurol Sci 2011; 308: 117-123.
Kallenbach K, Simonsen H, Sander B, et al. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis. Neurology 2010; 74: 252-258.
Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976; 26: 26-28.
Toussaint D, Perier O, Verstappen A, Bervoets S. Clinicopathological study of the visual pathways, eyes and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol 1983; 3: 211-220.
Petzold A, de Boer JF, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932.
Gundogan FC, Demirkaya S, Sobaci G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis? – A structural and functional evaluation. Invest Ophthalmol Vis Sci 2007; 48: 5773-5781.
Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, et al. Quantifying axonal loss after optic neurotis with optical coherence tomography. Ann Neurol 2006; 59: 963-969.
Huang J, Dai H, Zhang H, Wang X, Chen T. Clinical investigation of optic coherence tomography in evaluating the impairment of optic nerve secondary to multiple sclerosis. Zhonghua Yan Ke Za Zhi 2014; 50: 900-905.
Feng L, Shen J, Jin X, Li J, Li Y. The evaluation of the retinal nerve fiber layer in multiple sclerosis with special-domain optical coherence tomography. Ophthalmologica 2013; 230: 116-120.
Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical cohrence tomography and disease subtype in multiple sclerosis. Neurology 2007; 69: 2085-2092.
Green AJ, McQuaid S, Hauser SL, Allen, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133: 1591-1601.
Britze J, Pihl-Jensen G, Frederiksen Lautrup J. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis : a systematic review and meta-analysis. J Neurol 2017; 264: 1837-1853.
Pula JH, Towle VL, Staszak VM, Cao D, Bernard JT, Gomez CM. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 2011; 35: 108-114.
Wiethoff S, Zhour A, Schöls L, Fischer MD. Retinal nerve fibre layer loss in hereditary spastic paraplegias is restricted to complex phenotypes. BMC Neurol 2012; 12: 143.
Wang D, Li Y, Wang C, Xu L, You QS, Wang YX, et al. Localized retinal nerve fiber layer defects and stroke. Stroke 2014; 45: 1651-1656.
Kopishinskaya S, Svetozarskiy S, Antonova V, Gustov A. The first data on retinal optical coherence tomography parameters in Huntington’s disease. Eur J Neurol 2014; 21 (Suppl 1): 36.
Bambo MP, Garcia-Martin E, Otin S, Sancho E, Fuertes I, Herrero R, et al. Influence of cataract surgery on repeatability and measurements of spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98: 52-58.
Rao HL, Addepalli UK, Yadav RK, Senthil S, Choudhari NS, Garudadri CS. Effect of scan quality on diagnostic accuracy of spectra-domain optical coherence tomography in glaucoma. Am J Ophthalmol 2014; 157: 719-727.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe