Pediatria Polska
en ENGLISH
eISSN: 2300-8660
ISSN: 0031-3939
Pediatria Polska - Polish Journal of Paediatrics
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Rada naukowa Bazy indeksacyjne Kontakt Zasady publikacji prac Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
SCImago Journal & Country Rank
3/2025
vol. 100
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

The role of hepcidin in iron metabolism

Dagmara Adamska-Tomaszewska
1
,
Sabina Więcek
2

  1. Doctoral School, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Poland
  2. Department of Pediatrics, Medical University of Silesia, Katowice, Poland
Pediatr Pol 2025; 100 (3): 260-270
Data publikacji online: 2025/09/24
Plik artykułu:
- The role of hepcidin.pdf  [1.23 MB]
Pobierz cytowanie
 
Metryki PlumX:
 
1. Geissler C, Singh M. Iron, meat and health. Nutrients 2011; 3: 283-316.
2. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021). Seattle, United States: Institute for Health Metrics and Evaluation (IHME); 2024.
3. Pasricha S, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet 2021; 397: 233-248.
4. Matellio V, Schmugge M, Hengartner H, et al. Diagnosis and mana­gement of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur J Pediatr 2020; 179: 527-545.
5. Sawnson CA. Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol 2003; 30: 99-102.
6. Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism. Adv Exp Med Biol 2014; 844: 201-225.
7. Park CH, Valroe EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806-7810.
8. Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001; 276: 7811-7819.
9. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017; 8: 126-136.
10. Ramos E, Kautz I, Rodriguez R, et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading. Hepato­logy 2011; 53: 1333-1341.
11. Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 2006; 103: 10289-10293.
12. Andropoulos B Jr, Coradini E, Xia Y, et al. BMP-6 is a key endoge­nous regulator of hepcidin expression and iron metabolism. Nat Genet 2009; 41: 482-487.
13. Babbit J L, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 2006; 38: 531-539.
14. Zhang A, Gao J, Koeberl DD, Enns CA. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo. J Biol Chem 2010; 285: 16416-16423.
15. Yieny Y. What does the FOX(O) say? High iron: hepcidin! Blood 2024; 144: 1243-1245.
16. Enns CA, Weiskopf T, Zhang RH, et al. Matriptase-2 regulates iron homeostasis primarily by setting the basal levels of hepatic hepcidin expression through a nonproteolytic mechanism. J Biol Chem 2023; 299: 105238. DOI: 10.1016/j.jbc.2023.105238.
17. Meynard D, Vaja V, Sun CC, et al. Regulation of TMPRSS6 by BMP6 and iron in human cells and mice. Blood 2011; 118: 747-756.
18. Falzacappa MVV, Sasic MV, Kessler R, et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007; 109: 353-358.
19. Srole DN, Ganz T. Erythroferrone structure, function, and physiology: iron homeostasis and beyond. J Cell Physiol 2021; 236: 4888-4901.
20. Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25: 133-155.
21. Ganz T, Nemeth E. Hypoferremia of inflammation: Innate host defense against infections. Blood Cells Mol Dis 2024; 104: 102777. DOI: 10.1016/j.bcmd.2023.102777.
22. Lee P, Peng H, Gelbart T, et al. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A 2005; 102: 1906-1910.
23. Liu X, Nguyen NH, Marquess KD, et al. Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macropha­ges. Blood Cells Mol Dis 2005; 35: 47-56.
24. Peyssonaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial patho­gens. Blood 2006; 107: 3727-3732.
25. Demirag MD, Haznedaroglu S, Sancak B, et al. Circulating hepcidin in the crossroads of anemia and inflammation associated with rheumatoid arthritis. Intern Med 2009; 48: 421-426.
26. Tsuchyia K, Nitta K. Hepcidin is a potential regulator of iron status in chronic kidney disease. Ther Apher Dial 2013; 17: 1-8.
27. Nicolae CD, Coman OA, Ene C, et al. Hepcidin in neoplastic disease. J Med Life 2013; 6: 355-360.
28. Means RT Jr. Hepcidin and iron regulation in health and disease. Am J Med Sci 2013; 345: 57-60.
29. Nong J, Li H, Yang Y, et al. Low serum hepcidin levels in women with polycystic ovary syndrome: evidence from meta-analysis. Gynecol Endocrinol 2024; 40: 2375568. DOI: 10.1080/09513590.2024.2375568.
30. Krygier A, Szczepanek-Parulska E, Cieślewicz M, et al. Iron homeostasis and hepcidin concentration in patients with acromegaly. Front Endocrinol (Lausanne) 2022; 12: 788247. DOI: 10.3389/fendo. 2021.788247.
31. Dasaradhan T, Koneti J, Kalluru R, et al. Tuberculosis-associated anemia: a narrative review. Cureus 2022; 14: e27746. DOI: 10.7759/cureus.27746.
32. Nemeth E, Ganz T. Hepcidin–ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci 2021; 22: 6493. DOI: 10.3390/ijms22126493.
33. Domellof M, Lonnerdal B, Abrams SA, Hernell O. Iron absorption in breast-fed infants: effects of age, iron status, iron supplements, and complementary foods. Am J Clin Nutr 2002; 76: 198-204.
34. Guideline: Daily iron supplementation in infants and children. Geneva: World Health Organization; 2016.
35. Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol 2012; 26: 115-119.
36. Donovan A, Lima CA, Pinkus JL, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005; 1: 191-200.
37. Aschemeyer S, Qiao B, Stefanova D, et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 2018; 131: 899-910.
38. Billesbølle CB, Azumaya CM, Kretsch RC, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020; 586: 807-811.
39. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-2093.
40. Qiao B, Sugianto P, Fung E, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab 2012; 15: 918-924.
41. Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Hematologica 2020; 105: 260-272.
42. Crisafulli L, Correnti M, Gammella E, et al. Iron trapping in macro­phages reshapes the homeostasis of the haematopoietic system. Br J Haematol 2025; 206: 1485-1496.
43. Borges MD, Paes IF, Leonardo DP, et al. Circulating monocytes contribute to erythrocyte clearance in polycythemia vera. Int J Mol Sci 2025; 26: 5133. DOI: 10.3390/ijms26115133.
44. Zhang D, Senecal T, Ghosh MC, et al. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood 2011; 118: 2868-2877.
45. Zhang DL, Hughes RM, Ollivierre-Wilson H, et al. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab 2009; 9: 461-473.
46. Zhang DL, Ghosh MC, Ollivierre H, et al. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood 2018; 132: 2078-2087.
47. Fraenkel PG. Anemia of inflammation: a review. Med Clin North Am 2017; 101: 285-296.
48. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005; 352: 1011-1023.
49. Heeney MM, Finberg KE. Iron-refractory iron deficiency anemia (IRIDA). Hematol Oncol Clin North Am 2014; 28: 637-652.
50. Hoving V, Donker AE, Schols SEM, Swinkels DW. How I treat iron‐refractory iron deficiency anaemia – an expert opinion-based treatment guidance for children and adults. Br J Haematol 2025; 206: 1067-1076.
51. Babbit JL, Huang FW, Xia Y, et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007; 117: 1933-1939.
52. Novikov N, Buch A, Yang H, et al. First-in-human phase 1 study evaluating the safety, pharmacokinetics, and pharmacodynamics of DISC-0974, an anti-hemojuvelin antibody, in healthy participants. J Clin Pharmacol 2024; 64: 953-962.
53. Canali S, Vecchi C, Garuti C, et al. The SMAD pathway is required for hepcidin response during endoplasmic reticulum stress. Endocrinology 2016; 157: 3935-3945.
54. Boergermann JH, Kopf J, Yu PB, Knaus P. Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 2010; 42: 1802-1807.
55. Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood 2011; 117: 997-1004.
56. Asperti M, Denaro A, Gryzik M, et al. Sevuparin strongly reduces hepcidin expression in cells, mice, and healthy human volunteers. Hemasphere 2024; 8: e70035. DOI: 10.1002/hem3.70035.
57. Theurl I, Schroll A, Sonnweber T, et al. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood 2011; 118: 4977-4984.
58. Zhang S, Wang Z, Wang LX, Liu SJ. AG490: An inhibitor of hepcidin expression in vivo. World J Gastroenterol 2011; 17: 5032-5034.
59. Bruzzese A, Martino EA, Labanca C, et al. Momelotinib in myelofibrosis. Exper Opin Pharmacoter 2024; 25: 521-528.
60. Zhu X, Zuo Q, Labanca I, et al. Rocaglamide regulates iron homeostasis by suppressing hepcidin expression. Free Radic Biol Med 2024; 219: 153-162.
61. Furqan M, Oduoye MO. Momelotinib – a promising advancement in the management of myelofibrosis in adults with anemia. Front Oncol 2024; 14: 1411972. DOI: 10.3389/fonc.2024.1411972.
62. Mesa RA, Kiladijan J, Catalano JV, et al. SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in Janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol 2017; 35: 3844-3850.
63. Faith N, Camberlein E, Island ML, et al. Natural and synthetic STAT3 inhibitors reduce hepcidin expression in differentiated mouse hepatocytes expressing the active phosphorylated STAT3 form. J Mol Med 2010; 88: 477-486.
64. Hashizume M, Uchiyama Y, Horai N, et al. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, improved anemia in monkey arthritis by suppressing IL-6-induced hepcidin production. Rheumatol Int 2010; 30: 917-923.
65. Jarneborn A, Kopparapu PK, Jin T. The dual-edged sword: risks and benefits of JAK inhibitors in infections. Pathogens 2025; 14: 324. DOI: 10.3390/pathogens14040324.
66. Renders L, Budde K, Rosenberger C, et al. First-in-human Phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodia­lysis. PLoS One 2019; 14: e0212023. DOI: 10.1371/journal.pone.0212023.
67. Vadhan-Raj S, Abonour R, Goldman JW, et al. A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia. J Hematol Oncol 2017; 10: 73. DOI: 10.1186/s13045-017-0427-x.
68. Boyce M, Warrington S, Cortezi B, et al. Safety, pharmacokinetics and pharmacodynamics of the anti-hepcidin Spiegelmer lexaptepid pegol in healthy subjects. Br J Pharmacol 2016; 173: 1580-1588.
69. Sheetz M, Barrington P, Callies S, et al. Targeting the hepcidin–ferroportin pathway in anaemia of chronic kidney disease. Br J Clin Pharmacol 2019; 85: 935-948.
70. Ghanim H, Abuaysheh S, Hejna J, et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab 2020; 105: dgaa057. DOI: 10.1210/clinem/dgaa057.
71. Tatsumi Y, Yano M, Wakusawa S, et al. A revised classification of primary iron overload syndromes. J Clin Transl Hepatol 2024; 12: 346-356.
72. Kremyanskaya M, Kuykendall AT, Pemmaraju N, et al. Rusfertide, a hepcidin mimetic, for control of erythrocytosis in polycythemia vera. N Engl J Med 2024; 390: 723-735.
73. Kowdley KV, Modi NB, Peltekian K, et al. Rusfertide for the treatment of iron overload in HFE-related haemochromatosis: an open-label, multicentre, proof-of-concept phase 2 trial. Lancet Gastroenterol Hepatol 2023; 8: 1118-1128.
74. Modi NB, Shames R, Lickliter JD, Gupta S. Pharmacokinetics, pharmacodynamics, and tolerability of an aqueous formulation of rusfertide (PTG-3) a hepcidin mimetic, in healthy volunteers: a double- blind first-in-human study. Eur J Haematol 2024; 113: 340-350.
75. Modi NB, Khanna S, Rudraraju S, Valone F. Pharmacokinetics and pharmacodynamics of rusfertide, a hepcidin mimetic, following subcutaneous administration of a lyophilized powder formulation in healthy volunteers. Drugs R D 2024; 24: 539-552.
76. Casu C, Liu A, De Rosa G, et al. Tmprss6-ASO as a tool for the treatment of polycythemia vera mice. PLoS One 2021; 16: e0251995. DOI: 10.1371/journal.pone.0251995.
77. NCT05143957. A study to evaluate sapablursen (Formerly ISIS 702843, IONIS-TMPRSS6-LRx) in patients with polycythemia vera. Available at: ClinicalTrials.gov (Accessed: December 2024).
78. Vadolas J, Ng GZ, Kysenius K, et al. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia. Br J Heamatol 2021; 194: 200-210.
Copyright: © 2025 Polish Society of Paediatrics. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
© 2025 Termedia Sp. z o.o.
Developed by Bentus.