Postępy Psychiatrii i Neurologii
eISSN: 2720-5371
ISSN: 1230-2813
Advances in Psychiatry and Neurology/Postępy Psychiatrii i Neurologii
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Rada naukowa Recenzenci Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Opłaty publikacyjne Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
SCImago Journal & Country Rank
4/2025
vol. 34
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

The use of functional near-infrared spectroscopy (fNIRS) as a potential marker of the efficacy and safety of electroconvulsive therapy

Natalia Biedroń
1
,
Piotr Ziemecki
1
,
Aleksandra Bełżek
1
,
Firoz Rizvi
1
,
Agnieszka Permoda-Pachuta
2

  1. I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Poland
  2. Department of Neuroses, Personality Disorders, and Eating Disorders, Institute of Psychiatry and Neurology, Warsaw, Poland
Data publikacji online: 2025/12/08
Plik artykułu:
Pobierz cytowanie
 
Metryki PlumX:
 
1. Patriarca C, Clerici CA, Zannella S, Fraticelli C. Ugo Cerletti, Pathologica and electroconvulsive therapy. Pathologica 2021; 113: 481-487.
2. Salik I, Marwaha R. Electroconvulsive Therapy. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538266/.
3. Kellner CH, Fink M, Knapp R, Petrides G, Husain M, Rummans T, et al. Relief of expressed suicidal intent by ECT: a consortium for research in ECT study. Am J Psychiatry 2005; 162: 977-982.
4. Tess AV, Smetana GW. Medical evaluation of patients undergoing electroconvulsive therapy. N Engl J Med 2009; 360: 1437-1444.
5. Procopio M. NICE guidelines and maintenance ECT. Br J Psychiatry 2003; 183: 263. DOI: 10.1192/bjp.183.3.263.
6. Gurel SC, Ozden HC, Karahan S, Ayhan Y. The superiority of ketofol and etomidate against propofol or thiopental anesthesia for ECT. Asian J Psychiatr 2022; 72: 103090. DOI: 10.1016/j.ajp.2022.103090.
7. Taylor S. Electroconvulsive therapy: a review of history, patient selection, technique, and medication management. South Med J 2007; 100: 494-498.
8. Case BG, Bertollo DN, Laska EM, Siegel CE, Wanderling JA, Olfson M. Racial differences in the availability and use of electroconvulsive therapy for recurrent major depression. J Affect Disord 2012; 136: 359-365.
9. Greenhalgh J, Knight C, Hind D, Beverley C, Walters S. Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies. Health Technol Assess 2005; 9: 1-156.
10. Meechan CF, Laws KR, Young AH, McLoughlin DM, Jauhar S. A critique of narrative reviews of the evidence-base for ECT in depression. Epidemiol Psychiatr Sci 2022; 31: e10. DOI: 10.1017/S2045796021000731.
11. Gill SP, Kellner CH. Clinical practice recommendations for continuation and maintenance electroconvulsive therapy for depression. J ECT 2019; 35: 14-20.
12. Hermida AP, Glass OM, Shafi H, McDonald WM. Electroconvulsive therapy in depression. Psychiatr Clin North Am 2018; 41: 341-353.
13. Lisanby SH. Electroconvulsive therapy for depression. N Engl J Med 2007; 357: 1939-1945.
14. Kritzer MD, Peterchev AV, Camprodon JA. Electroconvulsive therapy: mechanisms of action, clinical considerations, and future directions. Harv Rev Psychiatry 2023; 31: 101-113.
15. Kawashima H, Yamasaki S, Kubota M, Hazama M, Fushimi Y, Miyata J, et al. Commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. Neuroimage Clin 2023; 38: 103429. DOI: 10.1016/j.nicl.2023.103429.
16. Ruiz-Chow ÁA, López-Cruz CJ, Crail-Meléndez D, Ramírez-Bermúdez J, Santos-Zambrano J, Luz-Escamilla LA. Neurological damage measured by S-100b and neuron-specific enolase in patients treated with electroconvulsive therapy. Brain Sci 2024; 14: 822. DOI: 10.3390/brainsci14080822.
17. Bassa A, Sagués T, Porta-Casteràs D, Serra P, Martínez-Amorós E, Palao DJ, et al. The neurobiological basis of cognitive side effects of electroconvulsive therapy: a systematic review. Brain Sci 2021; 11: 1273. DOI: 10.3390/brainsci11101273.
18. Kranaster L, Janke C, Mindt S, Neumaier M, Sartorius A. Protein S-100 and neuron-specific enolase serum levels remain unaffected by electroconvulsive therapy in patients with depression. J Neural Transm 2014; 121: 1411-1415.
19. Palmio J, Huuhka M, Laine S, Huhtala H, Peltola J, Leinonen E, et al. Electroconvulsive therapy and biomarkers of neuronal injury and plasticity: Serum levels of neuron-specific enolase and S-100b protein. Psychiatry Res 2010; 177: 97-100.
20. Pinna M, Manchia M, Oppo R, Scano F, Pillai G, Loche AP, et al. Clinical and biological predictors of response to electroconvulsive therapy (ECT): a review. Neurosci Lett 2018; 669: 32-42.
21. Porta-Casteràs D, Cano M, Camprodon JA, Loo C, Palao D, Soriano-Mas C, Cardoner N. A multimetric systematic review of fMRI findings in patients with MDD receiving ECT. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108: 110178. DOI: 10.1016/j.pnpbp.2020.110178.
22. Chen X, Yang H, Cui LB, Li X. Neuroimaging study of electroconvulsive therapy for depression. Front Psychiatry 2023; 14: 1170625. DOI: 10.3389/fpsyt.2023.1170625.
23. Hirano J, Takamiya A, Yamagata B, Hotta S, Miyasaka Y, Pu S, et al. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: a longitudinal functional near-infrared spectroscopy study. J Psychiatr Res 2017; 91: 26-35.
24. Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 2011; 22: 133-139.
25. Depping M, Wolf R, Nolte H, Palm E, Hirjak D, Thomann P. Electroconvulsive therapy in depression: insights from fMRI, PET and SPECT studies. Fortschr Neurol Psychiatr 2014; 82: 511-522 [Article in German].
26. Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, et al. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243: 118503. DOI: 10.1016/j.neuroimage.2021.118503.
27. Nie J, Wei Q, Bai T, Zhang T, Lv H, Zhang L, et al. Electroconvulsive therapy changes temporal dynamics of intrinsic brain activity in depressed patients. Psychiatry Res 2022; 316: 114732. DOI: 10.1016/j.psychres.2022.114732.
28. Kolasa G, Rybakowski F. Application of functional near-infrared spectroscopy in psychiatry and physical activity studies. Pharmacotherapy in Psychiatry and Neurology 2019; 35: 131-145.
29. Rahman MdA, Siddik AB, Ghosh TK, Khanam F, Ahmad M. A narrative review on clinical applications of fNIRS. J Digit Imaging 2020; 33: 1167-1184.
30. Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science (1979) 1977; 198: 1264-1267.
31. Brazy JE, Lewis DV, Mitnick MH, Jöbsis vander Vliet FF. Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics 1985; 75: 217-225.
32. Wolf M, Naulaers G, van Bel F, Kleiser S, Greisen G. A review of near infrared spectroscopy for term and preterm newborns. J Near Infrared Spectrosc 2012; 20: 43-55.
33. Tsow F, Kumar A, Hosseini SH, Bowden A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HardwareX 2021; 10: e00204. DOI: 10.1016/j.ohx.2021.e00204.
34. Ye X, Peng L, Sun N, He L, Yang X, Zhou Y, et al. Hotspots and trends in fNIRS disease research: a bibliometric analysis. Front Neurosci 2023; 17: 1097002. DOI: 10.3389/fnins.2023.1097002.
35. Krishnamurthy K, Yeung MK, Chan AS, Han YMY. Effortful control and prefrontal cortex functioning in children with autism spectrum disorder: an fNIRS study. Brain Sci 2020; 10: 880. DOI: 10.3390/brainsci10110880.
36. Gossé LK, Bell SW, Hosseini SMH. Functional near-infrared spectroscopy in developmental psychiatry: a review of attention deficit hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272: 273-290.
37. Meidenbauer KL, Choe KW, Cardenas-Iniguez C, Huppert TJ, Berman MG. Load-dependent relationships between frontal fNIRS activity and performance: a data-driven PLS approach. Neuroimage 2021; 230: 117795. DOI: 10.1016/j.neuroimage.2021.117795.
38. Nakamura S, Yomota S, Ito H, Akinaga N, Hori A, Chinomi K, et al. A novel cognitive function scale using functional near-infrared spectroscopy for evaluating cognitive dysfunction. J Alzheimers Dis 2021; 81: 1579-1588.
39. Kawabata Y, Imazu SI, Matsumoto K, Toyoda K, Kawano M, Kubo Y, et al. rTMS therapy reduces hypofrontality in patients with depression as measured by fNIRS. Front Psychiatry 2022; 13: 814611. DOI: 10.3389/fpsyt.2022.814611.
40. Gao C, Zhou H, Liu J, Xiu J, Huang Q, Liang Y, et al. Characteristics of frontal activity relevant to cognitive function in bipolar depression: an fNIRS study. Biomed Opt Express 2022; 13: 1551. DOI: 10.1364/BOE.448244.
41. Wu H, Lu B, Zhang Y, Li T. Differences in prefrontal cortex activation in Chinese college students with different severities of depressive symptoms: a large sample of functional near-infrared spectroscopy (fNIRS) findings. J Affect Disord 2024; 350: 521-530.
42. Wu H, Li T, Peng C, Yang C, Bian Y, Li X, et al. The right prefrontal cortex (PFC) can distinguish anxious depression from non-anxious depression: a promising functional near infrared spectroscopy study (fNIRS). J Affect Disord 2022; 317: 319-328.
43. Kumar V, Shivakumar V, Chhabra H, Bose A, Venkatasubramanian G, Gangadhar BN. Functional near infrared spectroscopy (fNIRS) in schizophrenia: a review. Asian J Psychiatr 2017; 27: 18-31.
44. Song H, Chen L, Gao R, Bogdan IIM, Yang J, Wang S, et al. Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Med Inform Decis Mak 2017; 17 (Suppl 3): 166. DOI: 10.1186/s12911-017-0559-5.
45. Chen L, Li Q, Song H, Gao R, Yang J, Dong W, Dang W. Classification of schizophrenia using general linear model and support vector machine via fNIRS. Phys Eng Sci Med 2020; 43: 1151-1160.
46. Erdoğan SB, Yükselen G. Four-class classification of neuropsychiatric disorders by use of functional near-infrared spectroscopy derived biomarkers. Sensors 2022; 22: 5407. DOI: 10.3390/s22145407.
47. Feng K, Law S, Ravindran N, Chen GF, Ma XY, Bo X, et al. Differentiating between bipolar and unipolar depression using prefrontal activation patterns: promising results from functional near infrared spectroscopy (fNIRS) findings. J Affect Disord 2021; 281: 476-484.
48. Tran BX, Nguyen TT, Boyer L, Fond G, Auquier P, Nguyen HAS, et al. Differentiating people with schizophrenia from healthy controls in a developing country: an evaluation of portable functional near infrared spectroscopy (fNIRS) as an adjunct diagnostic tool. Front Psychiatry 2023; 14: 1061284. DOI: 10.3389/fpsyt.2023.1061284.
49. Downey D, Brigadoi S, Trevithick L, Elliott R, Elwell C, McAllister-Williams RH, Anderson IM. Frontal haemo­dynamic responses in depression and the effect of electroconvulsive therapy. J Psychopharmacol 2019; 33: 1003-1014.
50. Anderson I, Blamire A, Branton T, Brigadoi S, Clark R, Downey D, et al. Randomised controlled trial of ketamine augmentation of electroconvulsive therapy to improve neuropsychological and clinical outcomes in depression (Ketamine-ECT study). Efficacy and Mechanism Evaluation 2017; 4: 1-112. DOI: 10.3310/eme04020.
51. Ziemecki P, Kopiś-Posiej N, Karakula-Juchnowicz H, Permoda-Pachuta A, Krukow P. Changes in frontal cortex hemodynamic activity in a patient with schizophrenia undergoing electroconvulsive therapy -case analysis using functional near-infrared spectroscopy (fNIRS). Current Problems of Psychiatry 2024; 25: 110-117.
52. Semkovska M, McLoughlin DM. Objective cognitive performance associated with electroconvulsive therapy for depression: a systematic review and meta-analysis. Biol Psychiatry 2010; 68: 568-577.
53. Massaneda-Tuneu C, Loo C, Martin D. Patients’ cognitive potential is associated with cognitive performance after an acute course of electroconvulsive therapy. J ECT 2025; 41: 206-211.
54. Liampas I, Danga F, Kyriakoulopoulou P, et al. The contribution of functional near-infrared spectroscopy (fNIRS) to the study of neurodegenerative disorders: a narrative review. Diagnostics 2024; 14: 663. DOI: 10.3390/diagnostics14060663.
55. Chou PH, Huang CJ, Sun CW. The potential role of functional near-infrared spectroscopy as clinical biomarkers in schizophrenia. Curr Pharm Des 2020; 26: 201-217.
56. Akın A. fNIRS-derived neurocognitive ratio as a biomarker for neuropsychiatric diseases. Neurophotonics 2021; 8: 035008. DOI: 10.1117/1.NPh.8.3.035008.
57. Yeung MK, Lin J. Probing depression, schizophrenia, and other psychiatric disorders using fNIRS and the verbal fluency test: a systematic review and meta-analysis. J Psychiatr Res 2021; 140: 416-435.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). License allowing third parties to download and share its works but not commercially purposes or to create derivative works.
© 2025 Termedia Sp. z o.o.
Developed by Bentus.