eISSN: 2450-4459
ISSN: 2450-3517
Lekarz POZ
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac
6/2018
vol. 4
 
Poleć ten artykuł:
Udostępnij:
więcej
 
 
streszczenie artykułu:
Artykuł przeglądowy

Antybiotykoterapia w zakażeniach układu oddechowego

Tadeusz Płusa

Data publikacji online: 2018/12/27
Pełna treść artykułu
Pobierz cytowanie
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Współczesna antybiotykoterapia zakażeń układu oddechowego oparta jest na badaniach klinicznych i analizach wieloośrodkowych. Formułowane zalecenia uwzględniają dostępne antybiotyki i ich skuteczność mikrobiologiczną. Przy wyborze antybiotyku należy wziąć pod uwagę jego cechy farmakokinetyczne, w tym minimalne stężenie hamujące, oraz stopień penetracji do dróg oddechowych i miąższu płucnego. Znaczne różnice w tym zakresie jednoznacznie wskazują na zasadność dokonywanego wyboru, co przekłada się na skuteczność prowadzonego leczenia. Ponieważ coraz częściej przyczyną zakażeń układu oddechowego są bakterie atypowe, istotną cechą podawanego antybiotyku jest jego zdolność do wnikania do wnętrza komórki, gdzie te bakterie się namnażają. Z kolei zdolność niektórych bakterii, np. Pseudomonas aeruginosa, do tworzenia biofilmu w znacznym stopniu utrudnia proces leczenia, bowiem większość antybiotyków nie ma zdolności przenikania do tej struktury. Powyższe przesłanki wskazują na przewagę makrolidów i fluorochinolonów w kontrolowaniu zakażenia w układzie oddechowym. Leczenie chorych z objawami zakażenia układu oddechowego azytromycyną podawaną wziewnie w postaci mikrocząsteczek okazało się skuteczniejsze w porównaniu z innymi konwencjonalnymi terapiami.

Modern antibiotic therapy of respiratory infections is based on clinical trials and multicentre analyses. The recommendations that have been made take into account the available antibiotics and their microbiological efficacy. The choice of antibiotic should also take into account its pharmacokinetic characteristics, including the minimum inhibitory concentration and the degree of penetration into the airways and pulmonary parenchyma. Significant differences in this area clearly indicate the reasonableness of the choice made, which translates into the effectiveness of the treatment. Because more and more often the cause of respiratory infections are atypical bacteria, an important feature of the administered antibiotic is its ability to penetrate inside the cell, where these bacteria multiply. In turn, the ability of some bacteria, e.g. Pseudomonas aeruginosa, to biofilm to a large extent hinders the treatment process, because most antibiotics do not have the ability to penetrate this structure. The above premises indicate the predominance of macrolides and fluoroquinolones in controlling the infection in the respiratory system. The treatment of patients with symptoms of respiratory infections by inhaled administration of azithromycin in the form of microparticles proved to be effective in comparison to other conventional therapies.
słowa kluczowe:

zakażenia, układ oddechowy, antybiotyki, azytromycyna

referencje:
Hryniewicz W, Albrecht P, Radzikowski A. Rekomendacje postępowania w pozaszpitalnych zakażeniach układu oddechowego. Narodowy Program Ochrony Antybiotyków 2016.
Trevino S, Ross D. Bacteremia and sepsis. W: Textbook of diagnostic microbiology. Mahon CR, Lehman DC, Manuselis G (red.). Saunders, Elsevier, St. Lois 2007; 995-1009.
Valencia M, Cavalcanti M, Torres A. The bacteriology of severe community-aquired pneumonia and the choice of appropriate empiric therapy. W: Severe pneumonia. Niederman MS (red.). Taylor & Francis, London, New York 2005; 81-108.
Bezerra PGM, Britto MCA, Correia JB i wsp. Viral and atypical bacterial detection in acute respiratory infection in children under five years. PLoS One 2011; 6: e18928.
Hammerschlag MR. Antibiotic susceptibility and treatment of Chlamydia pneumoniae infections. W: Chlamydia pneumoniae infection and disease. Friedman H, Yamamoto Y, Bendinelli M (red.). Kulwer Academic/Plenum Publishers, New York, Boston 2004; 45-56.
Choi J, Oh IY, Lee YS i wsp. Pseudomonas aeruginosa infection increases the readmission rate of COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13: 3077-3083.
Julián-Jiménez A, Valero IA, López AB i wsp. Recomendaciones para la atención del paciente con neumonía adquirida en la comunidad en los Servicios de Urgencias. Rev Esp Quimioter 2018; 31: 186-202.
Woodhead M. Community-acquired pneumonia: defining the patient at risk of severe illness and the role of mortality prediction models in patient management. W: Severe pneumonia. Niederman MS (red.). Taylor & Francis, London, New York 2005; 59-80.
Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin 2010; 26: 571-588.
Chew KL, Lin RTP, Teo JWP. Klebsiella pneumoniae in Singapore: hypervirulent infections and the carbapenemase threat. Front Cell Infect Microbiol 2017; 7: 515-521.
Płusa T, Kłodzińska A, Komaszyńska A i wsp. Zakażenia Klebsiella pneumoniae NDM – opis przypadków. Int Rev Alergol Clin Immunol Family Med 2015; 21: 161-165.
Cazzola M, D’Amato G, Matera MG. Intrapulmonary penetration of antimicrobials and implications in the treatment of lower respiratory tract infections. Eur Respir Mon 2004; 9: 13-44.
Honeybourne D. Antibiotic penetration in the respiratory tract and implications for the selection of antimicrobial therapy. Curr Opin Pulm Med 1997; 3: 170-174.
Cox AL, Meewis JM, Horton R. Penetration into lung tissue after intravenous administration of amoxicillin/clavulante. J Antimicrob Chemother 1989; 24 (suppl. B): 87-91.
Patel KB, Xuan D, Tessier PR i wsp. Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. Antimicrob Agents Chemother 1996; 40: 2375-2379.
Rodvold KA, Danziger LH, Gotfried MH. Steady-state plasma and bronchopulmonary concentrations of levofloxacin and azithromycin in healthy adults. Antimicrob Agents Chemother 2003; 47: 2450-2457.
Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 1991; 10: 100-106.
Khor SP, Bozigian H, Mayersohn M. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling. Drug Metab Dispos 1991; 19: 486-490.
Danesi R, Lupetti A, Barbara C i wsp. Comparative distribution of azithromycin in lung tissue of patients given oral daily doses of 500 and 1000 mg. J Antimicrob Chemother 2003; 51: 939-945.
Bryskier A, Agouridas C, Chantot JE. Structure and activity. W: The new macrolides, azalides, and streptogramins. Neu HC, Young LS, Zinner SH (red.). Marcel Dekker, New York 1993; 3-11.
Płusa T. Makrolidy w zakażeniach układu oddechowego. Medpress, Warszawa 2007.
Notter RH, Finkelstein JN, Holm BA. Introduction to lung injury. W: Lung Injury. Mechanisms, Pathophysiology and Therapy. Notter RH, Finkelstein JN, Holm BA. (red.). Taylor & Francis, London, New York 2005; 1-18.
Płusa T. Wpływ aerozoli na organizm. W: Postępy w aerozoloterapii. Płusa T (red.). Medpress, Warszawa 1996; 27-31.
Panpanich R, Lerttrakarnnon P, Laopaiboon MN. Azithromycin for acute lower respiratory tract infections. Cochrane Database Syst Rev 2008; (1): CD001954.
Herrmann G, Yang L, Wu H i wsp. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 2010; 202: 1585-1592.
Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2009; (4): CD004197.
Hand WL, Boozer RM, King-Thompson NL. Antibiotic uptake by alveolar macrophages of smokers. Antimicrob Agents Chemother 1985; 27: 42-45.
Togami K, Chono S, Seki T i wsp. Aerosol-based efficient delivery of telithromycin, a ketolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. Drug Dev Ind Pharm 2010; 36: 861-866.
Gotfried NH. Clarithromycin (Biaxin) extended-release tablet: a therapeutic review. Expert Rev Anti Infect Ther 2003; 1: 9-20.
Blasi F. Atypical pathogens and respiratory tract infections. Eur Respir J 2004; 24: 171-181.
Blasi F. The pathogenesis of community-acquired pneumonia. Eur Respir J 2004; 13: 80-84.
Fine MJ, Smith MA, Carson CA i wsp. Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis. JAMA 1996; 275: 134-141.
Restrepo MI, Mortensen EM, Velez JA i wsp. A comparative study of community-acquired pneumonia patients admitted to the ward and the ICU. Chest 2008; 133: 610-617.
Dark D. Multicenter evaluation of azithromycin and cefaclor in acute lower respiratory tract infections. Am J Med 1991; 91/suppl.3A: 31S-35S.
Ramirez P, Ferrer M, Marti V i wsp. Inflammatory biomarkers and prediction for intensive care unit admission in severe community-acquired pneumonia. Crit Care Med 2011; 39: 2211-2217.
Salluh JIF, Soares M, Povoa P. Corticosteroids in severe community-acquired pneumonia: the path we choose depends on where we want to get. Critical Care 2011; 15: 1-2.
Ceccato A, Cilloniz C, Ranzani OT i wsp. Treatment with macrolides and glucocorticosteroids in severe community-acquired pneumonia: A post-hoc exploratory analysis of a randomized controlled trial. PLoS One 2017; 12: e0178022.
Blum CA, Nigro N, Briel M i wsp. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Lond Engl 2015; 385: 1511-1518.
Torres A, Sibila O, Ferrer M i wsp. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 2015; 313: 677-686.
Altenburg J, de Graaff CS, van der Werf TS i wsp. Immunomodulatory effects of macrolide antibiotics – part 1: biological mechanisms. Respir Int Rev Thorac Dis 2011; 81: 67-74.
Lorenzo MJ, Moret I, Sarria B i wsp. Lung inflammatory pattern and antibiotic treatment in pneumonia. Respir Res 2015; 16: 15-20.
Wirz SA, Blum CA, Schuetz P i wsp. Pathogen- and antibiotic-specific effects of prednisone in community-acquired pneumonia. Eur Respir J 2016; 48: 1150-1159.
Donald BJ, Surani S, Deol HS i wsp. Spotlight on solithromycin in the treatment of community-acquired bacterial pneumonia: design, development, and potential place in therapy. Drug Des Devel Ther 2017; 11: 3559-3566.
Asadi L, Sligl WI, Eurich DT i wsp. Macrolide-based regimens and mortality in hospitalized patients with community-acquired pneumonia: a systematic review and metaanalysis. Clin Infect Dis Off Publ Infect Dis Soc Am 2012; 55: 371-380.
Mortensen EM, Halm EA, Pugh MJ i wsp. Association of azithromycin with mortality and cardiovascular events among older patients hospitalized with pneumonia. JAMA 2014; 311: 2199-2208.
Vardakas KZ, Trigkidis KK, Apiranthiti KN i wsp. The dilemma of monotherapy or combination therapy in community-acquired pneumonia. Eur J Clin Invest 2017; 47: doi: 10.1111/eci.12845.
Raz-Pasteur A, Shasha D, Paul M. Fluoroquinolones or macrolides alone versus combined with β-lactams for adults with community-acquired pneumonia: Systematic review and meta-analysis. Int J Antimicrob Agents 2015; 46: 242-248.
Garcia-Vidal C, Sanchez-Rodriguez I, Simonetti AF i wsp. Levofloxacin versus azithromycin for treating legionella pneumonia: a propensity score analysis. Clin Microbiol Infect 2017; 23: 653-658.
Ito A, Ishida T, Tokumasu H i wsp. Prognostic factors in hospitalized community-acquired pneumonia: a retrospective study of a prospective observational cohort. BMC Pulm Med 2017; 17: 78.
Vidal JE, Ludewick HP, Kunkel RM i wsp. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 2011; 79: 4050-4060.
Kaur N, Zhou B, Breitbeil F i wsp. A delineation of diketopiperazine self-assembly processes: understanding the molecular events involved in Nε-(fumaroyl)diketopiperazine of L-Lys (FDKP) interactions. Mol Pharm 2008; 5: 294-315.
Potocka E, Cassidy JP, Haworth P i wsp. Pharmacokinetic characterization of the novel pulmonary delivery excipient fumaryl diketopiperazine. J Diabetes Sci Technol 2010; 4: 1164-1173.
Wang Q, Mi G, Hickey D i wsp. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 2018; 160: 107-123.
POLECAMY
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe