Pediatric Endocrinology Diabetes and Metabolism
en ENGLISH
eISSN: 2083-8441
ISSN: 2081-237X
Pediatric Endocrinology Diabetes and Metabolism
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Suplementy Rada naukowa Recenzenci Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Opłaty publikacyjne Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
SCImago Journal & Country Rank
4/2025
vol. 31
 
Poleć ten artykuł:
Udostępnij:
Artykuł oryginalny

Hipoglikemiczne działanie ekstraktu z liści Caesalpinia Bonduc (L). Ekstrakt z liści Roxb u szczurów z cukrzycą indukowaną streptozotocyną

Ami Febriza
1
,
Anisah Ainun Zahrah
2
,
Nurul Sulfi Andini
3
,
Fityatun Usman
4

  1. Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia
  2. Bachelor of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia
  3. Study Program of Veterinary Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
  4. Study Program of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia
Pediatr Endocrinol Diabetes Metab 2025; 31 (4): 176-186
Data publikacji online: 2026/01/27
Plik artykułu:
Pobierz cytowanie
 
Metryki PlumX:
 
1. International Diabetes Federation. IDF Diabetes Atlas 2025. IDF, Brussels 2025. Available at: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/.
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14: 88–98. doi: 10.1038/nrendo.2017.151.
3. Rahman MM, Dhar PS, Sumaia, et al. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152: 113217. doi: 10.1016/j.biopha.2022.113217.
4. Jana K, Chatterjee K, Ali KM, et al. Antihyperglycemic and antioxidative effects of the hydro-methanolic extract of the seeds of Caesalpinia bonduc on streptozotocin-induced diabetes in male albino rats. Pharmacogn Res 2012; 4: 57. doi: 10.4103/0974-8490.91044.
5. Nadaf R. A study of hypoglycemic effect of Caesalpinia bonduc extract on alloxan-induced diabetic albino rats. Int J Basic Clin Pharmacol 2017; 6: 2153–2158. doi: 10.18203/2319-2003.ijbcp20173735.
6. Ahmad M, Jairajpuri DS, Aeri V, et al. Protective effect of Caesalpinia bonducella (Linn.) seed kernel extract in streptozotocin-induced hyperglycaemia and oxidative damage in Wistar rats. Int J Pharm Sci Res 2016; 7: 3406–3422. doi: 10.13040/ijpsr.0975-8232.7(8).3406-22.
7. Chakrabarti S, Biswas TK, Rokeya B, et al. Advanced studies on the hypoglycemic effect of Caesalpinia bonducella F. in type 1 and 2 diabetes in Long Evans rats. J Ethnopharmacol 2003; 84: 41–46. doi: 10.1016/S0378-8741(02)00262-3.
8. Al-Ishaq RK, Abotaleb M, Kubatka P, et al. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9: 430. doi: 10.3390/biom9090430.
9. Shukla S, Mehta A. Antioxidant, total phenolics and total flavonoid content of the aqueous extract of Caesalpinia bonducella seeds. Chiang Mai J Sci 2017; 44: 929–938.
10. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008; 51: 216–226. doi: 10.1007/s00125-007-0886-7Lee MS, Chyau CC, Wang CP, Wang TH, Chen JH, Lin HH. Flavonoids identification and pancreatic beta-cell protective effect of lotus seedpod. Antioxidants (Basel) 2020; 9: 658. doi: 10.3390/antiox9080658.
11. Gazali M, Jolanda O, Husni A, et al. In vitro a-amylase and a-glucosidase inhibitory activity of green seaweed Halimeda tuna extract from the coast of Lhok Bubon, Aceh. Plants 2023; 12: 393. doi: 10.3390/plants12020393.
12. Goulas V, Banegas-Luna AJ, Constantinou A, et al. Computation screening of multi-target antidiabetic properties of phytochemicals in common edible Mediterranean plants. Plants 2022; 11: 1637. doi: 10.3390/plants11131637.
13. Sembiring EN, Elya B, Sauriasari R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacogn J 2018; 10: 123–127. doi: 10.5530/pj.2018.1.22.
14. Iftikhar A, Aslam B, Iftikhar M, et al. Effect of Caesalpinia bonduc polyphenol extract on alloxan-induced diabetic rats in attenuating hyperglycemia by upregulating insulin secretion and inhibiting JNK signaling pathway. Oxid Med Cell Longev 2020; 2020: 9020219. doi: 10.1155/2020/9020219.
15. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc 2021; 1: e78. doi: 10.1002/cpz1.78.
16. Bajwa NS, Sadaqat S, Khan WU, et al. Effects of metformin and N-acetylcysteine on dyslipidemia in streptozotocin-induced diabetic rats. Pak J Med Health Sci 2022; 16: 596. doi: 10.53350/pjmhs2216596.
17. Widhiantara IG, Arunngam P, Siswanto FM. Ethanolic extract of Caesalpinia bonducella F. seed ameliorates diabetes phenotype of streptozotocin-nicotinamide-induced type 2 diabetes rat. Biomed Pharmacol J 2018; 11: 1127–1133. doi: 10.13005/BPJ/1473.
18. Oluwayemi AT, Nwachuku EO, Brown HM. Effects of the interaction of metformin and Vernonia amygdalina (bitter leaf) on streptozotocin-induced diabetic rats. Asian J Biochem Genet Mol Biol 2018; 1: 27494. doi: 10.9734/ajbgmb/2018/v1i227494.
19. Article O, Mustarichie R, Priambodo D, et al. Optimization of acyclovir suspension: Formulating development using Na-CMC and quality control of finished products. Int J Appl Pharm 2022; 14: 28. doi: 10.22159/ijap.2022.v14s5.28.
20. Xu W, Luo Q, Wen X-Y, et al. Antioxidant and anti-diabetic effects of caffeic acid in a rat model of diabetes. Trop J Pharm Res 2020; 19: 1227–1232. doi: 10.4314/tjpr.v19i6.17.
21. Melaku BC, Amare GG. Evaluation of antidiabetic and antioxidant potential of hydromethanolic seed extract of Datura stramonium Linn (Solanaceae). J Exp Pharmacol 2020; 12: 451–460. doi: 10.2147/JEP.S258522.
22. Parveen A, Zahra Z, Ullah Farooqi MQ, et al. Phytochemical screening and content determination of different species of genus Caesalpinia belonging to different origin with antidiabetic activity. Pharmacogn J 2017; 9: 743–749 doi: 10.5530/pj.2017.6.117.
23. Belayneh YM, Wubneh ZB, Birru EM, Getenet G. Evaluation of in vivo antidiabetic, antidyslipidemic and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). J Exp Pharmacol 2019; 11: 29–38. doi: 10.2147/JEP.S192264.
24. Maigoda TC, Judiono J, Purkon DB, et al. Evaluation of Peronema canescens leaves extract: Fourier transform infrared analysis, total phenolic and flavonoid content, antioxidant capacity, and radical scavenger activity. Open Access Maced J Med Sci 2022; 10: 117–124. doi: 10.3889/oamjms.2022.8221.
25. Islam MS, Biswas M, Sukorno FI, et al. Phytochemical screening and evaluation of antioxidant and thrombolytic activities of methanolic extract of Antidesma bunius L. (Family Euphorbiaceae) leaves. Int J Unani Integr Med 2018; 2: 32–38. doi: 10.33545/2616454x.2018.v2.i3a.50.
26. Sánchez-Carranza JN, Alvarez L, Marquina-Bahena S, et al. Phenolic compounds isolated from Caesalpinia coriaria induce S and G2/M phase cell cycle arrest differentially and trigger cell death by interfering with microtubule dynamics in cancer cell lines. Molecules 2017; 22: 0666. doi: 10.3390/molecules22040666.
27. Gebremeskel L, Beshir Tuem K, Teklu T. Evaluation of antidiabetic effect of ethanolic leaves extract of Becium grandiflorum Lam. (Lamiaceae) in streptozotocin-induced diabetic mice. Diabetes Metab Syndr Obes 2020; 13: 1481–1489. doi: 10.2147/DMSO.S246996.
28. Muhtadi A, Irenka Y, Ayu WC, et al. Hypoglycemic activity of ten medicinal plants extract in glucose-induced mice. Asian J Pharm Clin Res 2017; 10: 14. doi: 10.22159/ajpcr.2017.v10s2.19473.
29. Damayanthi E, Rimbawan R, Handharyani E. Potential of okra (Abelmoschus esculentus L.) extract to reduce blood glucose and malondialdehyde (MDA) liver in streptozotocin-induced diabetic rats. J Gizi Pangan 2018; 13: 47–54. doi: 10.25182/jgp.2018.13.1.47-54.
30. Pandey P. Antidiabetic activity of Caesalpinia bonducella leaves of hydro-alcoholic extracts in albino rats. Ymer 2022; 21: 840–846. doi: 10.37896/ymer21.07/67.
31. Rakhmat II, Yuslianti ER, Koswara T. Flavonoid-rutin effect to blood glucose level and pancreas regeneration in diabetic rats. Adv Health Sci Res 2021; 37:64–66. doi: 10.2991/ahsr.k.210723.016.
32. Gad-Elkareem MAM, Abdelgadir EH, Badawy OM, Kadri A. Potential antidiabetic effect of ethanolic and aqueous-ethanolic extracts of Ricinus communis leaves on streptozotocin-induced diabetes in rats. PeerJ 2019; 7: e6441. doi: 10.7717/peerj.6441.
33. Sok Yen F, Shu Qin C, Tan Shi Xuan S, et al. Hypoglycemic effects of plant flavonoids: A review. Evid Based Complement Alternat Med 2021; 2021: 2057333. doi: 10.1155/2021/2057333.
34. Larasati V, Pangkahila W, Budhiarta AA. Oral administration of Caesalpinia bonducella seeds ethanolic extract decreased postprandial blood glucose level and prevented the reduction of fasting insulin level of diabetic male albino rats (Rattus norvegicus). J Kedokteran dan Keseharan 2016; 3: 87–95.
35. Osigwe CC, Akah PA, Nworu CS. Biochemical and haematological effects of the leaf extract of Newbouldia laevis in alloxan-induced diabetic rats. J Biosci Med 2017; 5: 18–36. doi: 10.4236/jbm.2017.56003.
36. Dar P, Ali F, Sheikh IA, et al. Amelioration of hyperglycaemia and modulation of antioxidant status by Alcea rosea seeds in alloxan-induced diabetic rats. Pharm Biol 2017; 55: 1849–1855. doi: 10.1080/13880209.2017.1333127.
37. Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Biomed Res Int 2015; 2015: 381040. doi: 10.1155/2015/381040.
38. Kousar S, Hussain A, Aslam B, et al. Synergistic antioxidant and antidiabetic effects of Caesalpinia bonduc (L.) and Gymnema sylvestre (Retz.) in alloxan-induced diabetic rats. Chem Biodivers 2025; 22: e202500410.  doi: 10.1002/cbdv.202500410.
39. Sindete M, Gbankoto A, Osseni R, et al. A 90-day oral toxicity study of an ethanolic root extract of Caesalpinia bonduc (L.) Roxb. in Wistar rats. Evid Based Complement Alternat Med 2021; 2021: 6620026. doi: 10.1155/2021/6620026.
40. Dwitasari O, Hami Seno DS, Safithri M. Identification of bioactive compounds and a-glucosidase inhibition activity of Caesalpinia bonduc seed extract in vitro. Curr Biochem 2020; 5: 12–20. doi: 10.29244/cb.5.2.12-20.
41. Mathapati SS, Kalshetti M. Natriuretic and saluretic effects of Caesalpinia bonduc (Linn.) Roxb seed extracts in rats. Res J Pharm Technol 2024; 17: 5361–5367. doi: 10.52711/0974-360X.2024.00819.

© 2026 Termedia Sp. z o.o.
Developed by Bentus.