eISSN: 2449-9315
ISSN: 1234-8279
Pharmacotherapy in Psychiatry and Neurology/Farmakoterapia w Psychiatrii i Neurologii
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Rada naukowa Recenzenci Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
1/2022
vol. 38
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

Metylacja DNA a schizofrenia – potencjalna rola w patogenezie i diagnostyce choroby

Olga Płaza
1
,
Agata Szulc
1

1.
Department of Psychiatry, Medical University of Warsaw, Poland;
Klinika Psychiatryczna, Warszawski Uniwersytet Medyczny, Polska
Farmakoterapia w Psychiatrii i Neurologii 2022, 38 (1), 59–77
Data publikacji online: 2022/08/02
Plik artykułu:
Pobierz cytowanie
 
Metryki PlumX:
 
1. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 2006; 15(21): 3132-3145; doi: 10.1093/hmg/ddl253.
2. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 134B(1): 60-6; doi: 10.1002/ajmg.b.30140. PMID: 15717292.
3. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, Thiagalingam S. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res 2011; 129(2-3): 183-90; doi: 10.1016/j.schres.2011.04.007.
4. Abdolmaleky HM, Nohesara S, Ghadirivasfi M, Lambert AW, Ahmadkhaniha H, Ozturk S et al. DNA hypermethylation of serotonin transporter gene promoter in drug naïve patients with schizophrenia. Schizophrenia Research 2014; 152(2-3), 373-380; doi: 10.1016/j.schres.2013.12.007.
5. Aberg KA, Xie LY, McClay JL, Nerella S, Vunck S, Snider S et al. Testing two models describing how methylome-wide studies in blood are informative for psychiatric conditions. Epigenomics 2013; 5(4): 367-377; doi: 10.2217/epi.13.36.
6. Amoli MM, Khatami F, Arzaghi SM, Enayati S, Nejatisafa AA. Over-expression of TGF-β1 gene in medication free Schizophrenia. Psychoneuroendocrinology 2019; 99: 265-270; doi: 10.1016/j.psyneuen.2018.10.009.
7. Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 1997; 94(12): 6496-6499; doi:10.1073/pnas.94.12.6496.
8. Barker V, Walker RM, Evans KL, Lawrie SM. Methylation of glucocorticoid receptor (NR3C1), BDNF and oxytocin receptor genes in association with childhood maltreatment in schizophrenia and schizoaffective disorder. Schizophr Res 2020; 216: 529-531; doi: 10.1016/j.schres.2019.11.050.
9. Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 2015; Jun 2; 112(22): 6796-9; doi: 10.1073/pnas.1415301111.
10. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 1980; 8(7): 1499-1504; doi: 10.1093/nar/8.7.1499.
11. Bönsch D, Wunschel M, Lenz B, Janssen G, Weisbrod M, Sauer H. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res 2012; 198(3): 533-7; doi: 10.1016/j.psychres.2011.09.004.
12. Carrard A, Salzmann A, Malafosse A, Karege F. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord 2011; 132(3): 450-3; doi: 10.1016/j.jad.2011.03.018.
13. Causing CG, Gloster A, Aloyz R, Bamji SX, Chang E, Fawcett J et al. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 1997; 18(2): 257-67; doi: 10.1016/s0896-6273(00)80266-4.
14. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571, 489-499; doi: 10.1038/s41586-019-1411-0.
15. Dempster EL, Mill J, Craig IW, Collier DA. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 2006; 7: 10; doi: 10.1186/1471-2350-7-10.
16. Dmitrzak-Wȩglarz M, Hauser J. Epigenetic mechanisms in psychiatric disorders and cognitive functions. Psychiatria 2009; 6: 51-60.
17. Dong E, Tueting P, Matrisciano F, Grayson DR, Guidotti A. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl Psychiatry 2016; 6(1): e711; doi: 10.1038/tp.2015.191.
18. Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018; Sep 1; 392(10149): 777-786; doi: 10.1016/S0140-6736(18)31268-6.
19. Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005 Jan 1; 72(2-3): 109-22; doi: 10.1016/j.schres.2004.02.017. Erratum in: Schizophr Res. 2005 May 1; 74(2-3): 287. Hossein Fatemi, S [corrected to Fatemi, S Hossein].
20. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 2008; 31(7): 361-370; doi:10.1016/j.tins.2008.04.001.
21. Gałecki P, Szulc A. Psychiatria. In: Lis-Olszewska D, Szulc A. ed. Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29). Edra Urban & Partner, Wrocław 2018: 160.
22. Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: new findings and challenges. Annu Rev Genomics Hum Genet 2011; 12: 121-44; doi: 10.1146/annurev-genom-082410-101459.
23. Gothelf D, Feinstein C, Thompson T, Gu E, Penniman L, Van Stone E at al. Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry 2007 Apr; 164(4): 663-9; doi: 10.1176/ajp.2007.164.4.663.
24. Goud Alladi C, Etain B, Bellivier F, Marie-Claire C. DNA Methylation as a Biomarker of Treatment Response Variability in Serious Mental Illnesses: A Systematic Review Focused on Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int J Mol Sci 2018; Oct 4; 19(10): 3026; doi: 10.3390/ijms19103026.
25. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005; 102(26): 9341-9346; doi:10.1073/pnas.0503736102.
26. Green T, Gothelf D, Glaser B, Debbane M, Frisch A, Kotler M et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry 2009; 48(11): 1060-1068; doi: 10.1097/CHI.0b013e3181b76683.
27. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57(11): 1061-9; doi: 10.1001/archpsyc.57.11.1061. Erratum in: Arch Gen Psychiatry 2002; 59(1): 12. DiGiorgi Gerevini V [corrected to Di-Giorgi-Gerevini V].
28. Guidotti A, Grayson DR, Caruncho HJ. Epigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders. Front Cell Neurosci 2016; 10: 89; doi:10.3389/fncel.2016.00089.
29. Guidotti A, Grayson DR. DNA methylation and demethylation as targets for antipsychotic therapy. Dialogues Clin Neurosci 2014; 16(3): 419-429; doi:10.31887/DCNS.2014.16.3/aguidotti.
30. Guidotti A, Ruzicka W, Grayson DR, Veldic M, Pinna G, Davis JM, Costa E. S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. Neuroreport 2007; 18(1): 57-60; doi: 10.1097/WNR.0b013e32800fefd7.
31. Haraldsson HM, Ettinger U, Sigurdsson E. Developments in schizophrenia genetics: from linkage to microchips, deletions and duplications. Nord J Psychiatry 2011 Apr; 65(2): 82-8; doi: 10.3109/08039488.2011.552734.
32. Hauser J, Dmitrzak-Węglarz M. Review article In search of schizophrenia genes. Neuropsychiatria i Neuropsychologia/Neuropsychiatry and Neuropsychology 2009; 4(1): 1-9.
33. Henriksen MG, Nordgaard J, Jansson LB. Genetics of Schizophrenia: Overview of Methods, Findings and Limitations. Front. Hum. Neurosci 2017; 11: 322; doi: 10.3389/fnhum.2017.00322.
34. Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, Nordentoft M, Glenthøj B. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Nationwide Danish Twin Register. Biol Psychiatry 2018; Mar 15; 83(6): 492-498; doi: 10.1016/j.biopsych.2017.08.017.
35. Hu TM, Chen SJ, Hsu SH, Cheng MC. Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res 2019 May; 275: 276-282; doi: 10.1016/j.psychres.2019.03.044.
36. Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2007; 2(8): e809; doi:10.1371/journal.pone.0000809.
37. Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A et al. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 2013; 77(4): 208-14; doi: 10.1016/j.neures.2013.08.004.
38. Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, Kato T. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci 2005; 25(22): 5376-5381; doi: 10.1523/JNEUROSCI.0766-05.2005.
39. Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nature reviews. Neuroscience 2010; 11(6): 402-16; doi: 10.1038/nrn2841.
40. Kato T, Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology 2014 May; 80: 133-9; doi: 10.1016/j.neuropharm.2013.12.019.
41. Katoh-Semba R, Takeuchi IK, Semba R, Kato K. Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 1997; 69(1): 34-42; doi: 10.1046/j.1471-4159.1997.69010034.x.
42. Khavari B, Cairns MJ. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells 2020; 9(8): 1837; doi:10.3390/cells9081837.
43. Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders 2019; Front. Genet. 10:268; doi: 10.3389/fgene.2019.00268.
44. Kundakovic M, Lim S, Gudsnuk K, Champagne FA. Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psychiatry 2013; Aug 1;4:78; doi: 10.3389/fpsyt.2013.00078.
45. Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics 2015; 10(12): 1143-1155; doi:10.1080/15592294.2015.1114202.
46. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences 2012; 35(1), 57-67; doi: 10.1016/j.tins.2011.10.004.
47. Li W, Guo X, Xiao S. Evaluating the relationship between reelin gene variants (rs7341475 and rs262355) and schizophrenia: A meta-analysis. Neurosci Lett 2015; 609: 42-7; doi: 10.1016/j.neulet.2015.10.014.
48. Lichtermann D, Karbe E, Maier W. The genetic epidemiology of schizophrenia and of schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci 2000; 250(6): 304-10; doi: 10.1007/s004060070005.
49. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67-76; doi: 10.1093/epirev/mxn001.
50. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 2001; 24:1161-92; doi: 10.1146/annurev.neuro.24.1.1161.
51. Mendizabal I, Berto S, Usui N et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol 2019; 20(1): 135; doi: 10.1186/s13059-019-1747-7.
52. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82(3): 696-711; doi:10.1016/j.ajhg.2008.01.008.
53. Murphy BC, O'Reilly RL, Singh SM. Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 133B(1): 37-42; doi: 10.1002/ajmg.b.30134.
54. Ngan ET, Yatham LN, Ruth TJ, Liddle PF. Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: A PET study using [(18)F]setoperone. Am J Psychiatry 2000; 157(6): 1016-8; doi: 10.1176/appi.ajp.157.6.1016.
55. Nishioka M, Bundo M, Kasai K, Iwamoto K. DNA methylation in schizophrenia: progress and challenges of epigenetic studies. Genome Med 2012; 4(12): 96; doi:10.1186/gm397.
56. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 2004; 41(1): 71-84; doi: 10.1016/s0896-6273(03)00819-5.
57. Niu S, Yabut O, D'Arcangelo G. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 2008; 28(41): 10339-10348; doi:10.1523/JNEUROSCI.1917-08.2008.
58. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 2011; 45(11): 1432-8; doi: 10.1016/j.jpsychires.2011.06.013.
59. Osborne AJ, Pearson JF, Noble AJ, Gemmell NJ, Horwood LJ, Boden JM, Benton MC, Macartney-Coxson DP, Kennedy MA. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl Psychiatry 2020; Apr 22; 10(1): 114; doi: 10.1038/s41398-020-0800-3.
60. Owen MJ, O'Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 2011 Mar; 198(3): 173-5; doi: 10.1192/bjp.bp.110.084384.
61. Parade SH, Huffhines L, Daniels TE, Stroud LR, Nugent NR, Tyrka AR. A systematic review of childhood maltreatment and DNA methylation: candidate gene and epigenome-wide approaches. Transl Psychiatry 2021 Feb 19; 11(1): 134; doi: 10.1038/s41398-021-01207-y.
62. Pérez-Santiago J, Diez-Alarcia R, Callado LF, Zhang JX, Chana G, White CH et al. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. J Psychiatr Res 2012; 46(11): 1464-74; doi: 10.1016/j.jpsychires.2012.08.005.
63. Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV, Kelsoe J, Lehner T, Levinson DF, Moran A, Sklar P, Sullivan PF. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry 2009 May; 166(5): 540-56; doi: 10.1176/appi.ajp.2008.08091354.
64. Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med 2017; 9(1): 72; doi: 10.1186/s13073-017-0458-5.
65. Sahin S, Yüksel Ç, Güler J, Karadayı G, Akturan E, Göde E, Özhan AA, Üçok A. The history of childhood trauma among individuals with ultra high risk for psychosis is as common as among patients with first-episode schizophrenia. Early Interv Psychiatry 2013 Nov; 7(4): 414-20; doi: 10.1111/eip.12022.
66. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006; Jan 31; 103(5): 1412-7; doi: 10.1073/pnas.0510310103.
67. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511, 421-427; doi: 10.1038/nature13595.
68. Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, van den Bree M et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry 2014; 171(6): 627-639; doi: 10.1176/appi.ajp.2013.13070864.
69. Sharaf A, Rahhal B, Spittau B Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res 2015; 359, 393-407; doi: 10.1007/s00441-014-2022-6.
70. Sjöholm LK, Ransome Y, Ekström TJ, Karlsson O. Evaluation of Post-Mortem Effects on Global Brain DNA Methylation and Hydroxymethylation. Basic Clin Pharmacol Toxicol 2018; 122(2): 208-213; doi: 10.1111/bcpt.12875.
71. Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25(8): 1718-1748; doi: 10.1038/s41380-019-0601-3.
72. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 2002; 16(2): 165-170; doi: 10.1101/gad.215802.
73. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; Dec; 60(12): 1187-92; doi: 10.1001/archpsyc.60.12.1187.
74. Tang H, Dalton CF, Srisawat U, Zhang ZJ, Reynolds GP. Methylation at a transcription factor-binding site on the 5-HT1A receptor gene correlates with negative symptom treatment response in first episode schizophrenia. Int J Neuropsychopharmacol 2014 Apr; 17(4): 645-9; doi: 10.1017/S1461145713001442.
75. Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, Kato T. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry 2008; 63(5): 530-3; doi: 10.1016/j.biopsych.2007.07.003.
76. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 2004; 55(4): 346-352; doi: 10.1016/j.biopsych.2003.10.013.
77. Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis JM, Pinna G et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 2005; 57: 500-509.
78. Tsujita T, Niikawa N, Yamashita H, Imamura A, Hamada A, Nakane Y, Okazaki Y. Genomic discordance between monozygotic twins discordant for schizophrenia. Am J Psychiatry 1998 Mar; 155(3): 422-4; doi: 10.1176/ajp.155.3.422. PMID: 9501757.
79. Tylec A, Stryjecka-Zimmer M, Kucharska-Pietura K. Polimorfizm genu COMT w zaburzeniach psychicznych / Genetic polymorphism of COMT in mental disorders. Psychiatria Polska 2007; tom XLI, 4: 473-483.
80. Uffelmann E, Huang QQ, Munung NS et al. Genome-wide association studies. Nat Rev Methods Primers 2021; 1, 59; doi: 10.1038/s43586-021-00056-9.
81. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005; 102(6): 2152-2157; doi: 10.1073/pnas.0409665102.
82. Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T, Partonen T et al. Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol Psychiatry 2010; 67(10): 983-991; doi: 10.1016/j.biopsych.2009.09.026.
83. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 2002; 277(42): 39944-52; doi: 10.1074/jbc.M205147200.
84. Zhou J, Zhou D, Yan T, Chen W, Xie H, Xiong Y. Association between CpG island DNA methylation in the promoter region of RELN and positive and negative types of schizophrenia. J Int Med Res 2022; 50(5): 3000605221100345; doi: 10.1177/03000605221100345.
85. Zhu J, He F, Hu S, Yu J. On the nature of human housekeeping genes. Trends Genet 2008; Oct; 24(10): 481-4; doi: 10.1016/j.tig.2008.08.004.

© 2024 Termedia Sp. z o.o.
Developed by Bentus.